ebXML Core Components

May 2001

[image: image1.jpg]Creating A Single Global Electronic Market

Document Assembly and Context Rules

ebXML Core Components
10 May 2001

Version 1.04
1 Status of this Document

This Technical Report document has been approved by the Core Component Project Team and has been accepted by the ebXML Plenary.

This document contains information to guide in the interpretation or implementation of ebXML concepts.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.
This version:
www.ebxml.org/specs/ebCCDOC.pdf
Latest version:
www.ebxml.org/specs/ebCCDOC.pdf

2 ebXML participants

We would like to recognize the following for their significant participation to the development of this document
.

Editing team:
Mike Adcock, APACS

Sue Probert, Commerce One

James Whittle, e CentreUK

Gait Boxman, TIE
Thomas Becker, SAP

Team Leader:

Arofan Gregory, Commerce One

Vice Team Leader:

Eduardo Gutentag, SUN Microsystems

Contributors:
Eduardo Gutentag

Arofan Gregory

Matthew Gertner

Martin Bryan

Martin Roberts

Lauren Wood

Chris Nelson

Todd Freter

Mike Adcock

3 Table of Contents

21
Status of this Document

32
ebXML participants

43
Table of Contents

54
Introduction

64.1
Summary of Contents of Document

64.2
Related Documents

75
Document Assembly

86
Context Rules

107
XML-Based Rules Model

107.1
Rules Syntax

147.1.1
Notes on Assembly

147.1.2
Notes on Context

157.2
DTD for Assembly Documents

167.3
DTD for Context Rules Documents

198
Rule Ordering

209
Semantic Interoperability Document

209.1
DTD for Semantic Interoperability Document

2210
Output Constraints

2311
Appendix: Examples

2311.1
Example of Assembly Rules document

2411.2
Example of Context Rules Document

2611.3
Example of Semantic Interoperability Document

2712
References

2813
Disclaimer

2914
Contact Information

30Copyright Statement

4 Introduction

The challenge of ebXML is to create a framework for automating trading partner interactions that is both:

· Sufficiently generic to permit implementation across the entire range of business processes (in various industries, geographical regions, legislative environments, etc.)

· Expressive enough to be more effective than ad hoc implementations between specific trading partners
· .

This specification document describes the way in which rules can be formed and/or derived, but is not a prescriptive specification. It is believed that rule mechanisms will be achieved in different ways within different implementations/solutions.

This document deals with two specific aspects of the task:
· The assembly of core component schemas into full business document schemas,

· The modelling of core components for business documents that provide useful building blocks for real-world trading scenarios and, at the same time, are open enough to take into account the wide variety of document formats required by organizations with differing business practices and requirements
· .

Complicating this situation is the need for interoperability: companies must be able to communicate business documents effectively with minimum human intervention, even though the formats used may have a significantly different syntax.

Central to achieving this goal is the notion of context. Context provides a framework for adapting generic core components to specific business needs, while keeping the transformation process transparent so that the processing engine can find a useful set of common information for use by different trading partners. An example of a contextual category that is useful for business is industry: different industries will have different requirements for the syntax of core components. By starting with a generic core component and using context to derive a context-specific core component, we ensure that, at the very least, the information in the generic component will be useful when interacting with a trading partner in a different context (i.e. industry, region, etc.). This should be contrasted with the alternative: context-specific business documents that are not built from generic core components and therefore provide no common basis for interaction outside of that context.

In order to assemble full business documents from core components, rules are drawn specifying what components are to be included in the document, and how.

In order to generate a context-specific core component, rules are associated with different values for each of the context categories. This document presents a proposed syntax for these context rules, and a methodology for applying them, in order to achieve maximum reuse of existing XML software development tools and libraries.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119.

4.1 Summary of Contents of Document

This specification describes the mechanism for assembling documents from the library of Core Components. It describes the process of refining the components to contain exactly the information required by a specific business context and describes the output of this process such that it enables interoperability independent of any syntax binding. This approach also lends itself to an automated comparison with other, similar document definitions created in other syntaxes. The provided specifications are;

· A syntax for providing the assembly rules, with a DTD and sample;

· A syntax for refining the assembled structures, and indicating specific context drivers, also with DTD and sample;

· A format for capturing the critical information about the final result, provided as an XML DTD.

4.2 Related Documents

As mentioned above, other documents provide detailed definitions of some of the components and their inter-relationship. They include ebXML Specifications on the following topics:
· [ebCNTXT] Context and Re-Usability of Core Components Ver 1.04
· [ebCCNAM] Naming Convention for Core Components Ver 1.04
· [ccOVER] Catalogue of Core Components Ver 1.04
5 Document Assembly

Document assembly is the rules-based process whereby Core Components are extracted from the repository and used to create a schema model. That can then be used to create an XML schema which, when appropriate, and after the application of any relevant Context Rules, can be used to validate the contents of a business document.

For example, a Purchase order schema may consist of two parties (buyer, seller), and a sequence of items. Purchase orders are not Core Components; they must be assembled out of Core Components found in the repository
.

6 Context Rules

When a business process is taking place, the context can be specified by a set of contextual categories and their associated values. For example, if an auto manufacturer is purchasing paint from a chemicals manufacturer, the context values might be as follows:

	Contextual Category
	Value

	Process
	Procurement

	Product Classification
	Paint

	Region (buyer)
	France

	Region (seller)
	U.S.

	Industry (buyer)
	Not required (generic)

	Industry (seller)
	Retail

Rules indicate which context values (or combination thereof) must be present in order for them to be applied, as well as the action to be undertaken if a match occurs. Actions include adding additional information to a functional unit, making this information optional, required or eliminating optional information. We might, for instance, specify that addresses associated with organizations in the U.S. region be required to include a state (which might otherwise be optional). Note that these contextual changes are made individually to the Core Components that make up a business document, and not to the business document itself.

Despite this underlying simplicity, complications arise in certain cases that make real-world implementation of context rules extremely tricky. Broadly speaking, these complications relate to scenarios where two rules both match the context, but have conflicting results, or where different results are reached depending on the order in which matching rules are applied. The following examples illustrate these two cases (and refer to the sample context given above; see also see the document ebXML TR - Catalogue of Context Drivers Ver 1.04):
· One rule could require that if the buyer is in the U.S. region, product description should not be included in invoice line items. Another specifies that if the seller is in France, the product description (in French) shall be included
· .

· One rule could require that if the buyer’s industry is automotive, the product category should be added to the invoice line items. Another specifies that if a product category information entity exists and the seller’s industry is chemicals, an attribute should be added to the product category to indicate the toxicity of the products in the category. If the toxicity requirement were applied first, the attribute would not be added (since the product category was not yet present). The outcome therefore depends on the order in which the rules are applied
· .

The problem with these types of situations is not so much that there is no way to resolve them. It is rather that there are many possible solutions with no clear way of deciding which to choose, and all are sufficiently complex to place a significant burden on the implementer.
Additional complications result from the potentially hierarchical nature of context values. For example, the possible values for region belong in a hierarchical space (e.g. continent, country, region, city, etc.). The region specification can therefore be very general or very specific. Since rules can match a general value (e.g. apply if the organization is in North America) or a specific value (e.g. apply if the organization is in Omaha, Nebraska), there must be some way of determining which rules to apply (any combination including all of them) if several match. This is because, in some cases, a specific rule may complement the general rule, while in others it may override it.

7 XML-Based Rules Model

The custom XML syntax for assembly and context rules presented in this document is designed to ensure an appropriate level of abstraction for the rules, and to allow them to be applied both manually and/or by programs.
7.1 Rules Syntax

The syntax is presented here in tabular form, to avoid tying the definition of the schemas it describes to a given schema language syntax. This table should be sufficiently expressive to permit the derivation of a corresponding schema definition in various concrete schema syntaxes (DTD, XML Schema, SOX, XDR, etc.). This syntax describes two XML schemas describing two classes of XML documents whose roots are, respectively, <Assembly> and <ContextRules>. They are presented here in a single table because there is conceptual commonality.

A specific rules file is thus an XML document conforming to one of these schemas
.

The following values are allowed for the occurrence field:

	Name
	Meaning

	Required
	Must occur exactly once

	Optional
	May occur once at most

	+
	Required and may occur multiply

	*
	Optional and may occur multiply

	(m,n)
	Occurs at least m and at most n times

Names separated by the vertical bar (|) represent a disjunction (i.e. one and only one of the list of names may occur). For example, Apple|Orange|Banana indicates that either an Apple or an Orange or a Banana may occur in this location.
Names prefixed with the commercial at sign (@) are represented as attributes in the XML instance (and the leading @ is removed from the attribute name).

	Name
	Type
	Occurrence
	Default
	Description

	Assembly

	Assemble
	complex
	+
	
	List of assembled Core Components

	@name
	string
	optional
	
	Name of collection of assembled document schemas.

	@version
	string
	optional
	
	Version of the Assembly Rules document.

	Assemble

	CreateElement
	complex
	+
	
	List of Core Components

	CreateGroup
	complex
	*
	
	Create a group of elements

	@name
	string
	required
	
	Name of the document schema being assembled

	CreateGroup

	@type
	enum
	default
	sequence
	Type of group to be created (the only permitted values are ‘sequence’ and ‘choice’)

	CreateGroup
	complex
	*
	
	Create a group of elements

	CreateElement
	complex
	*
	
	Create an Element

	UseElement
	complex
	*
	
	Use the named element from among the children of the element being created.

	Annotation
	complex
	*
	
	Insert Annotation

	CreateElement

	Type
	string
	optional
	
	Type of element to be created

	MinOccurs
	string
	optional
	
	Minimum occurrences for the element created

	MaxOccurs
	string
	optional
	
	Maximum occurrences for the element created. One possible value (other than integer) is ‘unbounded’.

	@id
	ID
	required
	
	Id of the created element

	@idref
	IDREF
	optional
	
	Reference to the ID of another created element

	Name
	string
	required
	
	Name of the element to be assembled

	@location
	UUID|URI
	required
	
	Location of the element to be assembled (i.e. query to the registry)

	Rename
	EMPTY
	optional
	
	Renames children of the created element

	Annotation
	complex
	*
	
	Insert Annotation

	Rename

	@from
	string
	required
	
	Original name of the child element being renamed

	@to
	string
	required
	
	New name of the child being renamed

	ContextRules

	Rule
	complex
	+
	
	List of rules to be applied

	@version
	string
	optional
	
	Version of the ContextRules document.

	Rule

	@apply
	enum
	default
	exact
	(See below)

	Condition
	complex
	required
	
	When rule should be run

	Action
	complex
	+
	
	What happens when rule is run

	@order
	integer
	default
	0
	Defines order for running rules. Rules with higher value for order are run first

	Taxonomy
	EMPTY
	+
	
	List of taxonomies used in a Rule that employs hierarchical conditions.

	Taxonomy

	@ref
	URI
	Required
	
	Pointer to a taxonomy.

	Condition

	@Test
	string
	Required
	
	Boolean expression testing whether the rule should be run. Uses XPath syntax [XPATH]

	Action

	@applyTo
	string
	Required
	
	Node to apply action to

	Add|Subtract|
Occurs
	complex
	+
	
	List of modifications to content model

	Add

	MinOccurs
	integer
	default
	1
	Minimum number of times that the new instance must occur

	MaxOccurs
	integer
	default
	1
	Maximum number of times that the new instance can occur

	@before
	string
	optional
	
	Specifies before which child the addition should occur.

	@after
	string
	optional
	
	Specifies after which child the subtraction should occur.

	Element
	complex
	optional
	
	Adds a new element to the content model.

	Attribute
	complex
	optional
	
	Adds a new attribute to the content model

	Annotation
	complex
	*
	
	Insert Annotation

	Subtract

	Element
	complex
	optional
	
	Removes an element from the content model.

	Attribute
	Complex
	optional
	
	Removes an attribute from the content model

	Occurs

	Element
	complex
	required
	
	Changes an optional element to required.

	MinOccurs
	integer
	optional
	1
	Overrides the minimum number of occurrences for this Element.

	MaxOccurs
	integer
	optional
	1
	Overrides the maximum number of occurrences for this Element.

	Element

	Nameame
	string
	required
	
	Name of element to be modified

	Type
	string
	optional
	
	Type of element, required only if contained in an Add tag

	Attribute
	complex
	*
	
	Attribute(s) of this element

	Annotation
	complex
	*
	
	Insert Annotation

	Attribute

	Name
	string
	optional
	
	Name of attribute to be modified

	Type
	string
	optional
	
	Type of the attribute (e.g. ID, CDATA, enumerated list, etc.)

	Use
	required | optional | fixed | default
	optional
	required
	Indicates whether required or optional, and if the latter whether fixed or defaulted

	Value
	string
	optional
	
	Indicates a fixed or defaulted value, or a value to be modified

	UseElement

	Name
	string
	required
	
	Name of the element being used

	Annotation
	complex
	*
	
	Insert Annotation

	Comment

	
	string
	optional
	
	Ubiquitous. Records comments about the rules document at the location it appears. It is not intended to be output in the result document.

	Type

	
	string
	optional
	
	Type in the output

	MinOccurs

	
	string
	Optionl
	
	Minimum number of occurrences in the output

	MaxOccurs

	
	string
	Optional
	
	Maximum number of occurrences in the output

7.1.1 Notes on Assembly

The MinOccurs and MaxOccurs elements in the CreateElement element specify the occurrence indicator that the created element will have in the resulting schema. Thus, an element created with <MinOccurs>1</MinOccurs> and <MaxOccurs>1</MaxOccurs> should be specified in the resulting schema as an element that must occur only once.

An <Assembly> may contain more than one assembled document schema. Whether a separate document is output for each assembled schema is implementation dependent
.

7.1.2 Notes on Context

Several built-in variables are used to access context information. These variables correspond to the various context drivers identified in the document ebXML TR - Catalogue of Context Drivers Ver 1.04:
· Industry
· Business Process
· Product
· Geopolitical
· Official Constraints
· Role
All of these variables have values of type string.

The “Apply” attribute of the “Rule” element type is used for determining the behaviour of rules that use hierarchical value spaces. Possible values are “exact” (match only if the value in the provided context is precisely the same as that specified in the rule) and “hierarchical” (match if the value provided is the same or a child of that specified in the rule). For example, if the rule specifies the region “Europe”, the value “France” would match only if the “Apply” attribute is set to “hierarchical” (“exact” being the default).

The minOccurs and maxOccurs elements in Occurs are defaulted. If neither is present, the intent is to change an optional element into a required one (that is, it's a shortcut for <MinOccurs>1</MinOccurs>, <MaxOccurs>1</MaxOccurs>).

The <Attribute> element has four optional elements in its content model, of which at least one must be present. If the value of the applyTo attribute of Action is an attribute, there is no need to specify the Name again. If only Value is specified, the intention must be to add or subtract a given value from an attribute’s enumerated list.

Rules apply only to the source. For instance, given a source that contains an optional element type named ‘X’, a rule can be applied to rename ‘X’ to ‘Y’, but a rule to make ‘Y’ required, rather than ‘X’, would be illegal.

(also see [ebCNTXT] Context & Re-Usability of Core Components Ver1.04)

7.2 DTD for Assembly Documents

<!ELEMENT Assembly (Assemble+)>

<!ATTLIST Assembly

 version CDATA #IMPLIED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Assemble (CreateElement|CreateGroup)+>

<!-- the name is the name of the schema that is created -->

<!ATTLIST Assemble

 name CDATA #REQUIRED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT CreateGroup

(CreateGroup|CreateElement|UseElement|Annotation)+ >

<!ATTLIST CreateGroup

 type (sequence|choice) "sequence"

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT CreateElement (Name?, Type?, MinOccurs?, MaxOccurs?,

(CreateGroup|Rename|UseElement|Condition|Annotation)*)>

<!-- you need either a Name sub-element and

an ID attribute, or just an IDREF attribute -->

<!-- max can be an integer or the word "unbounded" -->

<!ATTLIST CreateElement

 id ID #IMPLIED

 idref IDREF #IMPLIED

 location CDATA #IMPLIED

>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Type (#PCDATA)>

<!ELEMENT MinOccurs (#PCDATA)>

<!ELEMENT MaxOccurs (#PCDATA)>

<!ELEMENT Rename EMPTY>

<!ATTLIST Rename

 from CDATA #REQUIRED

 to CDATA #REQUIRED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT UseElement (Annotation|CreateGroup|UseElement)*>

<!ATTLIST UseElement

 name CDATA #REQUIRED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Condition (Rename|CreateGroup|UseElement|CreateElement)+>

<!ATTLIST Condition

 test CDATA #REQUIRED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Annotation (Documentation | AppInfo)*>

<!ATTLIST Annotation

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Documentation (#PCDATA)>

<!ATTLIST Documentation

 id ID #IMPLIED

 idref IDREF #IMPLIED

>
<!ELEMENT AppInfo (#PCDATA)>

<!ATTLIST AppInfo

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

7.3 DTD for Context Rules Documents

<!ELEMENT ContextRules (Rule+)>

<!ATTLIST ContextRules

 version CDATA #IMPLIED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Rule (Taxonomy+, Condition+)>

<!ATTLIST Rule

 apply (exact|hierarchical) “exact”

 order CDATA #IMPLIED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Taxonomy EMPTY>

<!-- this ref should be a URI -->

<!ATTLIST Taxonomy

 context CDATA #REQUIRED

 ref CDATA #REQUIRED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Condition (Action|Condition|Occurs)+>

<!ATTLIST Condition

 test CDATA #REQUIRED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Action (Add|Occurs|Subtract|Condition|Comment|Rename)+>

<!ATTLIST Action

 applyTo CDATA #REQUIRED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Add ((MinOccurs?,MaxOccurs?,(Element?

 |Attribute?))|CreateGroup|Annotation)+>

<!-- before and after refer either to the ID of the other element or

to its Xpath -->

<!ATTLIST Add

 before CDATA #IMPLIED

 after CDATA #IMPLIED

 id ID #IMPLIED

 idref IDREF #IMPLIED
>

<!ELEMENT Rename EMPTY>

<!ATTLIST Rename

 from CDATA #REQUIRED

 to CDATA #REQUIRED

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT CreateGroup (Element)+>

<!ATTLIST CreateGroup

 type (choice|sequence) “sequence”

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Element (Name, Type?, (Attribute)*, (Annotation)*)>

<!ATTLIST Element

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Attribute (Name?, Type?, Use?,

Value?, (Annotation)*)>

<!ATTLIST Attribute

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Use (#PCDATA)>

<!ELEMENT Value (#PCDATA)>

<!ELEMENT Annotation (Documentation | AppInfo)*>

<!ATTLIST Annotation

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Documentation (#PCDATA)>

<!ATTLIST Documentation

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT AppInfo (#PCDATA)>

<!ATTLIST AppInfo

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Occurs (MinOccurs?, MaxOccurs?,(Element+))>

<!ATTLIST Occurs

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Subtract (Element | Attribute)+>

<!ATTLIST Subtract

 id ID #IMPLIED

 idref IDREF #IMPLIED

>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Type (#PCDATA)>

8 Rule Ordering

There are two mechanisms for determining the order in which context rules should be applied. The first is document order, that is, the order in which the rules appear in the Rules document. The second is an explicit “Order” attribute that can be used to force a given order on a set of rules. It's an error for two rules have the same order. Users should be careful not to issue rules in an order that would preclude their execution (for instance, adding an attribute to an element that has not been added yet by the rules). Applications must issue error messages when such a situation is encountered, rather than silently ignoring it.
9 Semantic Interoperability Document

This section specifies an XML document format, the Semantic Interoperability Document that a processor applying assembly rules and context rules within a single context can output. This serves two purposes:
· It creates a syntax-neutral output format, so that two processors working with different syntax mappings could determine the semantic equivalence of their context rules by comparing the output when expressed in this form.

· It provides a mechanism for mapping from a syntax-specific output back to the syntax-neutral one, using techniques such as UUID pointers or Xpath expressions, enabling implementation using existing tools.

9.1 DTD for Semantic Interoperability Document

The semantic interoperability document type is expressed in the following DTD:

<!-- Semantic Interoperability Document Definition -->

<!-- the Document element holds metadata about the document: -->

<!ELEMENT Document (Taxonomy+, Assembly, ContextRules?,Component+) >

<!-- - Taxonomy points to the specific context that, combined with context rules and assembly rules, produced the specific instance.

The content of the Taxonomy element is the value or values specified from the referenced context taxonomy.

- Assembly references the assembly that produced the instance.

- ContextRules references the context rules that produced the instance.-->

<!ATTLIST Document

 name CDATA #IMPLIED

 UUID CDATA #IMPLIED
>

<!ELEMENT Taxonomy (#PCDATA)>

<!ATTLIST Taxonomy

 context CDATA #REQUIRED

 ref CDATA #REQUIRED

 UUID CDATA #IMPLIED
>

<!ELEMENT Assembly EMPTY>

<!-- For each specified contextual value for the document, you must

supply a context name and a value, expressed as the name of the context driver (the top level of the context hierarchy), an equals sign, and one or more values enclosed in single quotes. For example:

 value="Industry='Aerospace' Geopolitical='United States'"

Note that ranges in the value position are indicated by hyphens and

that path expressions are valid values. Lists of values may be

indicated by using commas or pipes, with or without whitespace.

-->

<!ATTLIST Assembly

 name CDATA #REQUIRED

 value CDATA #REQUIRED

 UUID CDATA #IMPLIED

>

<!ELEMENT ContextRules EMPTY>

<!ATTLIST ContextRules

 name CDATA #REQUIRED

 value CDATA #REQUIRED

 UUID CDATA #IMPLIED>

<!ELEMENT Component (Component | Group)*>

<!-- - Type attribute must be included if the element is of a simple type. If it is not provided, the name value is assumed to be the same as the complex type name.

 - Occurrence applies to the component itself and indicates how often it occurs in the final schema.It must be one of the following:

 [no value is "one and only one"]

 ?

 +

 *

 n,m where n is minimum and m is maximum

- Sequence applies to the children of the component. It is information in the context rules that must be kept, even if not all syntaxes need it or support it. Values should be:

 FollowedBy: the order in which the children are specified is important, and is

the order in which they will be specified in the final schema.

 AnyOrder: the order in which the children are specified is not important, since the final schema will allow them in any order. All of the children must be present in a document written according to the final schema.

 Choice: the order in which the children are specified is not important. Only one of the children is allowed in a document written according to the final schema.

 -->

<!ATTLIST Component

 name CDATA #REQUIRED

 type CDATA #IMPLIED

 occurrence CDATA #IMPLIED

 sequence CDATA #IMPLIED

 UUID CDATA #IMPLIED

>

<!-- The Group element functions as a way of describing the structural relationships among nested, unnamed groups of child components. The use of its attributes are the same as for the Component elements.

-->
<!ELEMENT Group (Component | Group)*>

<!ATTLIST Group

 occurrence CDATA #IMPLIED

 sequence CDATA #IMPLIED

>

10 Output Constraints

Documents produced through the application of Assembly and Context Rules must contain information regarding which rules and context were used as metadata
.
11 Appendix: Examples

11.1 Example of Assembly Rules document

<?xml version="1.0"?>

<!DOCTYPE Assembly SYSTEM "assembly.dtd">

<Assembly version="1.0">
 <Assemble name="PurchaseOrder" id=”PO”>
 <CreateGroup>
 <CreateElement location="UUID" id="Buyer">
 <Name>Buyer</Name>

 <Type>PartyType</Type>
 <CreateGroup>

 <UseElement name="Name">
 </UseElement>
 <UseElement name="Address">
 <CreateGroup id="fred">
 <CreateGroup type="choice">
 <UseElement name="BuildingName">
 </UseElement>
 <UseElement name="BuildingNumber">
 </UseElement>
 </CreateGroup>
 <UseElement name="StreetName">

 </UseElement>

 <UseElement name="City">

 </UseElement>

 <UseElement name="State">

 </UseElement>

 <UseElement name="ZIP">

 </UseElement>

 <UseElement name="Country">

 </UseElement>

 </CreateGroup>
 </UseElement>

 </CreateGroup>

 <Condition test="$Geopolitical='United States'">

 <Rename from="address" to="addressUS"/>

 <Rename from="Place" to="City"/>

 <Rename from="address/County" to="State"/>

 <Rename from="address/PostalCode" to="ZIP"/>

 </Condition>

 </CreateElement>
 <CreateElement id="Seller" location="UUID">

 <Name>Seller</Name>

 <Type>PartyType</Type>

 </CreateElement>

 </CreateGroup>
 <CreateElement
 location="UUID" id="Item">

 <Name>Item</Name>

 <Type>ItemType</Type>

 <MinOccurs>1</MinOccurs>

 <MaxOccurs>unbounded</MaxOccurs>

 </CreateElement>

 </Assemble>

 <Assemble name="PurchaseOrderReceipt" id=”POR”>
 <CreateGroup>

 <CreateElement idref="Seller">

 </CreateElement>

 <CreateElement idref="Buyer">

 </CreateElement>

 </CreateGroup>

 <CreateElement idref="Item">

 </CreateElement>

 <CreateElement location="UUID"
 id="Ack">

 <Name>Acknowledgment</Name>

 <Type>AckType></Type>

 </CreateElement>

 </Assemble>

</Assembly>
11.2 Example of Context Rules Document

<?xml version="1.0"?>

<!DOCTYPE ContextRules SYSTEM "contextrules.dtd">

<ContextRules id=”CalAer”>

 <Rule apply="hierarchical">

 <Taxonomy context="Geopolitical"

 ref="http://ebxml.org/classification/ISO3166"/>

 <Taxonomy context="Industry"

 ref="http://ebxml.org/classification/industry/aviation"/>
 <Condition test="$Geopolitical='United States'">
 <Action applyTo="//Buyer/Address">
 <Occurs>
 <Element >
 <Name>State</Name>

 </Element>
 </Occurs>
 <Add after="@id='fred'">
 <CreateGroup type="choice">
 <Element >
 <Name>Floor</Name>

 <Type>string</Type>

 </Element>
 <Element >
 <Name>Suite</Name>

 <Type>string</Type>

 </Element>
 </CreateGroup>
 </Add>
 <Condition
 test="$Geopolitical='California' and$Industry='Aerospace'">
 <Occurs>
 <Element >
 <Name>ZIP</Name>

 </Element>
 </Occurs>
 </Condition>
 </Action>
 </Condition>
 </Rule>
 <Rule order="10">

 <Taxonomy context="Geopolitical"

 ref="http://ebxml.org/classification/ISO3166"/>
 <Condition test="$Business Process='RFQ'">
 <Condition test="Industry='Insurance'">
 <Action applyTo="//Party">
 <Add before="Address">
 <Element >
 <Name>QualifyingInfo</Name>

 <Type>QualifyingInfo</Type>

 <Attribute>

 <Name>Privacy</Name>

 <Type>yes | no</Type>

 <Use>default</Use>

 <Value>yes</Value>

 </Attribute>

 <Attribute>

 <Name>Accuracy</Name>

 <Type>CDATA</Type>

 <Use>required</Use>

 </Attribute>

 <Annotation>
 <Documentation>What this element is for.

 </Documentation>
 </Annotation>
 </Element>
 </Add>
 </Action>
 </Condition>
 <Condition test="$Industry='Travel'">
 <Action applyTo="//Party">
 <Subtract>
 <Attribute >
 <Name>TaxIdentifier</Name>

 </Attribute>
 </Subtract>
 </Action>
 </Condition>
 </Condition>
 </Rule>
 <Rule>

 <Taxonomy context="Industry"

 ref="http://ebxml.org/classification/Industry/Automotive"/>
 <Condition test="$Industry='Automotive'">
 <Action applyTo="//QualifyingInfo">
 <Add>
 <Element >
 <Name>DrivingRecord</Name>

 <Type>DrivingRecord</Type>

 </Element>
 <Element >
 <Name>CarDescription</Name>

 <Type>CarDescription</Type>

 </Element>
 <Element >

 <Name>DrivingHabits</Name>

 <Type>DrivingHabits</Type>
 </Element>
 </Add>

 <Rename from="@Convictions" to="@DrivingConvictions"/>

 </Action>
 <Action applyTo=”//QualifyingInfo/@Convictions”>

 <Add>

 <Attribute>

 <Value>Unknown</Value>

 </Attribute>

 </Add>

 </Action>

 </Condition>
 </Rule>

</ContextRules>
11.3 Example of Semantic Interoperability Document

This example assumes a US address, and the California/Aerospace example from above.

<?xml version=”1.0”?>

<!DOCTYPE Document SYSTEM “sid.dtd”>

<Document>

 <Taxonomy context="Geopolitical"

 ref="http://ebxml.org/classification/ISO3166">Region

 </Taxonomy>

 <Assembly name="PurchaseOrder" value=”Geopolitical=’United
 States’”/>

 <ContextRules name=”CalAer” value="Industry='Aerospace'
Geopolitical='United States'"/>

 <Component name=”PurchaseOrder” sequence=”FollowedBy”>

 <Component name=”Buyer” sequence=”FollowedBy”>

 <Component name=”Address” sequence=”FollowedBy”>

 <Group sequence=”Choice”>

 <Component name=”BuildingName”/>

 <Component name=”BuildingNumber”/>

 </Group>

 <Group sequence=”Choice”>

 <Component name=”Floor”/>

 <Component name=”Suite”/>

 </Group>

 <Component name=”City”/>

 <Component name=”State”/>

 <Component name=”ZIP”/>

 <Component name=”Country”/>

 </Component>

 </Component>

 <Component name=”Seller”/>

 <Component name=”Item” occurrence=”+”/>

 </Component>

</Document>

12 References

[XPATH] http://www.w3.org/TR/xpath

13 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

14 Contact Information

Team Leader
 Name
Arofan Gregory
 Company
Commerce One

 Street
Vallco Parkway

 City, state, zip/other
Cupertino, CA

 Nation
US

 Phone:

 Email:
arofan.gregory@commerceone.com

Vice Team Lead

 Name
Eduardo Gutentag

 Company
SUN Microsystems

 Street
17 Network Circle – UMPK17-102

 City, state, zip/other
Menlo Park, California

 Nation
US

 Phone:
+1-650-786-5498

 Email:
Eduardo.Gutentag@eng.sun.com

Editor

 Name
Gait Boxman

 Company
TIE

 Street
Beech Avenue 161

 City, state, zip/other
Amsterdam (Schiphol-Rijk)

 Nation
The Netherlands

 Phone:
 Email:
gait.boxman@tie.nl

Copyright Statement

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

This document and translations of it MAY be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation MAY be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself MAY not be modified in any way, such as by removing the copyright notice or references to ebXML, UN/CEFACT, or OASIS, except as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by ebXML or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

�PAGE \# "'Page: '#'�'" ��Do we need to create attributes? If so, how?

�PAGE \# "'Page: '#'�'" ��Do we need to create attributes? If so, how?

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.
Document Assembly and Context Rules

Page 30 of 30
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

