ebXML POC demo draft proposal

January, 25th 2001

Spec area: TR&P

Theme: Reliable Messaging, Scalability and Robustness

Authors: Fujitsu & Savvion

Note

This proposal is only technical, and demonstrates the enhanced RM, as in TRP spec V 0.91.

However it is in fact of great business significance, as it tests the validity of the spec from a scalability point of view, which has never been done before.

It should be able to accommodate many business scenarios, i.e. to blend well with / complement other demo proposals that show a business scenario.

RM in its first version (V0.21d) was severely limited: the restriction of having the Sender to wait for an Ack before sending the next message simply does not scale up.

The Sliding Windows method introduced in ebXML TR&P Modifications to Message Specificatio v0.8

Is a response to this problem: it allows a MSH to reliably send several messages without waiting for the ack of each. A window has to be defined that defines how many messages can be sent without getting an ack for the earlier message of the window.

Also, multi-hop routing has been introduced, along with an enhancement of RM method to accommodate it.

Scenario

The demo will implement the latest RM technique. It will show

Scenario #1: Sender – Hub – Receiver

The Sender is a brokerage firm that treats a high volume of trade order messages in a reliable way. Orders need to be sent/received with once-and-only-once semantics.

The Sender will send these orders as a batch of N messages (e.g. N=1000). The purpose is to test/demonstrate that RM works for large numbers of messages without entailing significant overhead in terms of delay and latency.

The demo will compare:

1. Non-reliable sending: Sender generating a batch to Receiver. A gauge shows the sending progress over time, as well as the received volume on receiver side. A failure condition will be created for a few messages in the batch – not detected, as expected (not received by Receiver app) - say 3. So at the end of the experiment, we see:

· Sender: (N) message sent, after (x)seconds.

· Receiver: (N-3) message received, after (y) seconds.

2. Reliable sending: Sender generating a batch to Receiver. (same gauge shows the sending progress over time, as well as on receiver side). A failure condition will be created for a few messages in the batch – detected by Receiver. So at the end of the experiment, we see:

· Sender: (N) message sent, after (x’)seconds.

· Receiver: (N) message received, after (y’) seconds.

The demo succeeds if y’ is not significantly greater than y. The time necessary to send the batch of orders should be about the same for (1) and (2): RM does not slow down the sender significantly, while guaranteeing once-and-only-once for these critical messages. The point here is not the absolute performance, which depends ultimately on the hardware platform and MSH implementation, but it is the relative performance between non-RM and RM.

