
Copyright © ebXML 2000 & 2001. All Rights Reserved.

 1

 2

 3

 4

ebXML Registry Information Model 5

ebXML Registry Project Team 6

Working Draft 3/19/2001 7

This version: Version 0.60 8
 9

1 Status of this Document 10

 11
This document specifies an ebXML DRAFT STANDARD for the eBusiness 12
community. 13
 14
Distribution of this document is unlimited. 15
 16
The document formatting is based on the Internet Society’s Standard RFC 17
format. 18
 19
This version: 20
 http://www.ebxml.org/project_teams/registry/private/RegistryInfoModelv0.60.pdf 21
 22
Latest version: 23
 http://www.ebxml.org/project_teams/registry/private/RegistryInfoModel.pdf 24
 25
Previous version: 26
 http://www.ebxml.org/project_teams/registry/private/RegistryInfoModelv0.59.pdf 27
 28
 29

30

ebXML Registry January 2000

ebXML Registry Information Model Page 2

Copyright © ebXML 2000 & 2001. All Rights Reserved.

2 ebXML participants 30

The authors wish to acknowledge the support of the members of the Registry 31
Project Team who contributed ideas to this specification by the group’s 32
discussion e-mail list, on conference calls and during face-to-face meetings. 33
 34
Lisa Carnahan – NIST 35
Joe Dalman - Tie 36
Philippe DeSmedt - Viquity 37
Sally Fuger – AIAG 38
Len Gallagher - NIST 39
Steve Hanna - Sun Microsystems 40
Scott Hinkelman - IBM 41
Michael Kass, NIST 42
Jong.L Kim – Innodigital 43
Sangwon Lim, Korea Institute for Electronic Commerce 44
Bob Miller - GXS 45
Kunio Mizoguchi - Electronic Commerce Promotion Council of Japan 46
Dale Moberg – Sterling Commerce 47
Ron Monzillo – Sun Microsystems 48
JP Morgenthal – eThink Systems, Inc. 49
Joel Munter - Intel 50
Farrukh Najmi - Sun Microsystems 51
Scott Nieman - Norstan Consulting 52
Frank Olken – Lawrence Berkeley National Laboratory 53
Michael Park - eSum Technologies 54
Bruce Peat - eProcess Solutions 55
Mike Rowley – Excelon Corporation 56
Waqar Sadiq - Vitria 57
Krishna Sankar - Cisco Systems Inc. 58
Kim Tae Soo - Government of Korea 59
Nikola Stojanovic - Encoda Systems, Inc. 60
David Webber – XML Global 61
Yutaka Yoshida - Sun Microsystems 62
Prasad Yendluri - webmethods 63
Peter Z. Zhoo - Knowledge For the new Millennium 64
 65

66

ebXML Registry January 2000

ebXML Registry Information Model Page 3

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Table of Contents 66

 67

1 STATUS OF THIS DOCUMENT..1 68

2 EBXML PARTICIPANTS..2 69

3 INTRODUCTION ...6 70

3.1 SUMMARY OF CONTENTS OF DOCUMENT..6 71
3.2 GENERAL CONVENTIONS ..6 72
3.3 AUDIENCE...6 73
3.4 RELATED DOCUMENTS ...7 74

4 DESIGN OBJECTIVES..7 75

4.1 GOALS ..7 76
4.2 CAVEATS AND ASSUMPTIONS ...7 77

5 SYSTEM OVERVIEW ...7 78

5.1 ROLE OF EBXML REGISTRY...7 79
5.2 REGISTRY SERVICES ...8 80
5.3 WHAT THE REGISTRY INFORMATION MODEL DOES ..8 81
5.4 HOW THE REGISTRY INFORMATION MODEL WORKS ..8 82
5.5 WHERE THE REGISTRY INFORMATION MODEL MAY BE IMPLEMENTED8 83
5.6 CONFORMANCE AS AN EBXML REGISTRY..8 84

6 REGISTRY INFORMATION MODEL: PUBLIC VIEW....................................9 85

6.1 REGISTRYENTRY ..10 86
6.2 SLOT ...10 87
6.3 ASSOCIATION..10 88
6.4 EXTERNALIDENTIFIER ..10 89
6.5 EXTERNALLINK ..10 90
6.6 CLASSIFICATIONNODE..10 91
6.7 CLASSIFICATION ...11 92
6.8 PACKAGE ..11 93
6.9 AUDITABLEEVENT..11 94
6.10 USER...11 95
6.11 POSTALADDRESS ..11 96
6.12 ORGANIZATION...11 97

7 REGISTRY INFORMATION MODEL: DETAIL VIEW..................................11 98

7.1 INTERFACE OBJECT...12 99
7.2 INTERFACE VERSIONABLE..14 100
7.3 INTERFACE REGISTRYENTRY..14 101

7.3.1 Pre-defined RegistryEntry Status Types ..16 102

ebXML Registry January 2000

ebXML Registry Information Model Page 4

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.3.2 Pre-Defined Object Types..17 103
7.3.3 Pre-defined RegistryEntry Stability Enumerations18 104

7.4 INTERFACE SLOT ...18 105
7.5 INTERFACE EXTRINSICOBJECT...19 106
7.6 INTERFACE INTRINSICOBJECT..20 107
7.7 INTERFACE PACKAGE..20 108
7.8 INTERFACE EXTERNALIDENTIFIER..21 109
7.9 INTERFACE EXTERNALLINK..21 110

8 REGISTRY AUDIT TRAIL...22 111

8.1 INTERFACE AUDITABLEEVENT ...22 112
8.1.1 Pred-defined Auditable Event Types ...23 113

8.2 INTERFACE USER...23 114
8.3 INTERFACE ORGANIZATION..24 115
8.4 CLASS POSTALADDRESS ..25 116
8.5 CLASS TELEPHONENUMBER ..26 117
8.6 CLASS PERSONNAME...26 118

9 REGISTRY ENTRY NAMING ...26 119

10 ASSOCIATION OF REGISTRY ENTRIES ..27 120

10.1 INTERFACE ASSOCIATION...27 121
10.1.1 Pre-defined Association Types ..28 122

11 CLASSIFICATION OF REGISTRY ENTRIES ..29 123

11.1 INTERFACE CLASSIFICATIONNODE...31 124
11.2 INTERFACE CLASSIFICATION ..32 125

11.2.1 Context Sensitive Classification ..33 126
11.3 EXAMPLE OF CLASSIFICATION SCHEMES ..34 127
11.4 STANDARDIZED TAXONOMY SUPPORT ...35 128

11.4.1 Full-featured Taxonomy Based Classification ..35 129
11.4.2 Light Weight Taxonomy Based Classification ...35 130

12 INFORMATION MODEL: SECURITY VIEW ..36 131

12.1 INTERFACE ACCESSCONTROLPOLICY...37 132
12.2 INTERFACE PERMISSION ..38 133
12.3 INTERFACE PRIVILEGE...38 134
12.4 INTERFACE PRIVILEGEATTRIBUTE..39 135
12.5 INTERFACE ROLE ..39 136
12.6 INTERFACE GROUP..39 137
12.7 INTERFACE IDENTITY ...39 138
12.8 INTERFACE PRINCIPAL...40 139

13 REFERENCES ..41 140

14 DISCLAIMER ...41 141

ebXML Registry January 2000

ebXML Registry Information Model Page 5

Copyright © ebXML 2000 & 2001. All Rights Reserved.

15 CONTACT INFORMATION...42 142

COPYRIGHT STATEMENT...43 143

 Table of Figures 144

Figure 1: Information Model Public View.. 9 145
Figure 2: Information Model Inheritance View...12 146
Figure 3: Example of Registry Entry Association..27 147
Figure 4: Example showing a Classification Tree...30 148
Figure 5: Information Model Classification View...31 149
Figure 6: Classification Instance Diagram ...31 150
Figure 7: Context Sensitive Classification..34 151
Figure 8: Information Model: Security View...37 152

Table of Tables 153

Table 1: Sample Classification Schemes...35 154

 155

156

ebXML Registry January 2000

ebXML Registry Information Model Page 6

Copyright © ebXML 2000 & 2001. All Rights Reserved.

3 Introduction 156

3.1 Summary of Contents of Document 157

This document specifies the information model for the ebXML Registry. 158
 159
A separate document, ebXML Registry Services Specification [RS], describes 160
how to build Registry Services that provide access to the information content in 161
the ebXML Registry. 162

3.2 General Conventions 163

o UML diagrams are used as a way to concisely describe concepts. They are 164
not intended to convey any specific implementation or methodology 165
requirements. 166

o Interfaces are often used in UML diagrams. They are used instead of classes 167
with attributes to provide an abstract definition without implying any specific 168
implementation. Specifically, they do not imply that objects in the Registry will 169
be accessed directly via these interfaces. Objects in the Registry are 170
accessed via interfaces described in the ebXML Registry Services 171
Specification. Each get method in every interface has an explicit indication of 172
the attribute name that the get method maps to. For example getName 173
method maps to an attribute named name. 174

o The term “repository item” is used to refer to actual Registry content (e.g. a 175
DTD, as opposed to metadata about the DTD). It is important to note that the 176
information model is not modeling actual repository items. 177

o The term “RegistryEntry” is used to refer to an object that provides metadata 178
about content instance (repository item). 179

 180
The information model does not contain any elements that are the actual content 181
of the Registry (repository item). All elements of the information model represent 182
metadata about the content and not the content itself. 183
 184
Software practitioners MAY use this document in combination with other ebXML 185
specification documents when creating ebXML compliant software. 186
 187
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 188
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in 189
this document, are to be interpreted as described in RFC 2119 [Bra97]. 190

3.3 Audience 191

The target audience for this specification is the community of software 192
developers who are: 193

ebXML Registry January 2000

ebXML Registry Information Model Page 7

Copyright © ebXML 2000 & 2001. All Rights Reserved.

o Implementers of ebXML Registry Services 194
o Implementers of ebXML Registry Clients 195

3.4 Related Documents 196

The following specifications provide some background and related information to 197
the reader: 198

a) ebXML Registry Business Domain Model [BDM] - defines requirements 199
for ebXML Registry Services 200

b) ebXML Registry Services Specification [RS] - defines the actual Registry 201
services based on this information model 202

c) Collaboration Protocol Agreement Specification [CPA] (under 203
development) - defines how profiles can be defined for a party and how 204
two parties’ profiles may be used to define a party agreement 205

d) ebXML Business Process Specification Schema [BPM] 206
 207

4 Design Objectives 208

4.1 Goals 209

The goals of this version of the specification are to: 210

o Communicate what information is in the Registry and how that information is 211
organized 212

o Leverage as much as possible the work done in the OASIS [OAS] and the 213
ISO 11179 [ISO] Registry models 214

o Align with relevant works in progress within other ebXML working groups 215

o Be able to evolve to support future ebXML Registry requirements 216

o Be compatible with other ebXML specifications 217

4.2 Caveats and Assumptions 218

The Registry Information Model specification is first in a series of phased 219
deliverables. Later versions of the document will include additional functionality 220
planned for current and future development. 221

5 System Overview 222

5.1 Role of ebXML Registry 223

The Registry provides a stable store where content submitted by a Submitting 224
Organization is made persistent. Such content is used to facilitate ebXML-based 225
business to business (B2B) partnerships and transactions. Submitted content 226
may be XML schema and documents, process descriptions, core components, 227

ebXML Registry January 2000

ebXML Registry Information Model Page 8

Copyright © ebXML 2000 & 2001. All Rights Reserved.

context descriptions, UML models, information about parties and even software 228
components. 229

5.2 Registry Services 230

A set of Registry Services that provide access to Registry content to clients of the 231
Registry is defined in the ebXML Registry Services Specification [RS]. This 232
document does not provide details on these services but may occasionally refer 233
to them. 234

5.3 What the Registry Information Model Does 235

The Registry Information Model provides a blueprint or high-level schema for the 236
ebXML Registry. Its primary value is for implementers of ebXML Registries. It 237
provides these implementers with information on the type of metadata that is 238
stored in the Registry as well as the relationships among metadata classes. 239

The Registry information model: 240

o Defines what types of objects are stored in the Registry 241

o Defines how stored objects are organized in the Registry 242

o Is based on ebXML metamodels from various working groups 243
 244

5.4 How the Registry Information Model Works 245

Implementers of the ebXML Registry may use the information model to 246
determine which classes to include in their Registry implementation and what 247
attributes and methods these classes may have. They may also use it to 248
determine what sort of database schema their Registry implementation may 249
need. 250

[Note]The information model is meant to be 251
illustrative and does not prescribe any 252
specific implementation choices. 253

 254

5.5 Where the Registry Information Model May Be Implemented 255

The Registry Information Model may be implemented within an ebXML Registry 256
in form of a relational database schema, object database schema or some other 257
physical schema. It may also be implemented as interfaces and classes within a 258
Registry implementation. 259

5.6 Conformance as an ebXML Registry 260

 261

If an implementation claims conformance to this specification then it supports all 262
required information model classes and interfaces, their attributes and their 263
semantic definitions that are visible through the ebXML Registry Services. 264

ebXML Registry January 2000

ebXML Registry Information Model Page 9

Copyright © ebXML 2000 & 2001. All Rights Reserved.

6 Registry Information Model: Public View 265

This chapter provides a high level public view of the most visible objects in the 266
Registry. 267
 268
Figure 1 shows the public view of the objects in the Registry and their 269
relationships as a UML class diagram. It does not show inheritance, class 270
attributes or class methods. 271
The reader is again reminded that the information model is not modeling actual 272
repository items. 273
 274

 275

Figure 1: Information Model Public View 276

ebXML Registry January 2000

ebXML Registry Information Model Page 10

Copyright © ebXML 2000 & 2001. All Rights Reserved.

6.1 RegistryEntry 277

The central object in the information model is a RegistryEntry. An instance of 278
RegistryEntry exists for each content instance submitted to the Registry. 279
Instances of the RegistryEntry class provide metadata about a repository item in 280
the Registry. The actual repository item (e.g. a DTD) is not contained in an 281
instance of the RegistryEntry class. Note that most classes in the information 282
model are specialized sub-classes of RegistryEntry. Each RegistryEntry is 283
related to exactly one repository item, however, in the future revision of this 284
document, it may be related to multiple repository items. 285

6.2 Slot 286

Slot instances provide a dynamic way to add arbitrary attributes to RegistryEntry 287
instances. This ability to add attributes dynamically to RegistryEntry instances 288
enables extensibility within the Registry Information Model. 289

6.3 Association 290

Association instances are RegistryEntries that are used to define many-to-many 291
associations between objects in the information model. Associations are 292
described in detail in chapter 10. 293

6.4 ExternalIdentifier 294

ExternalIdentifier instances provide additional identifier information to 295
RegistryEntry such as DUNS number, Social Security Number, or an alias name 296
of the organization. 297

6.5 ExternalLink 298

ExternalLink instances are RegistryEntries that model a named URI to content 299
that is not managed by the Registry. Unlike managed content, such external 300
content may change or be deleted at any time without the knowledge of the 301
registry. RegistryEntry may be associated with any number of ExternalLinks. 302
Consider the case where a Submitting Organization submits a repository item 303
(e.g. a DTD) and wants to associate some external content to that object (e.g. 304
the Submitting Organization's home page). The ExternalLink enables this 305
capability. A potential use of the ExternalLink capability may be in a GUI tool that 306
displays the ExternalLinks to a RegistryEntry. The user may click on such links 307
and navigate to an external web page referenced by the link. 308

6.6 ClassificationNode 309

ClassificationNode instances are RegistryEntries that are used to define tree 310
structures where each node in the tree is a ClassificationNode. Classification 311
trees constructed with ClassificationNodes are used to define classification 312
schemes or ontologies. ClassificationNode is described in detail in chapter 11. 313

ebXML Registry January 2000

ebXML Registry Information Model Page 11

Copyright © ebXML 2000 & 2001. All Rights Reserved.

6.7 Classification 314

Classification instances are RegistryEntries that are used to classify repository 315
item by associating their RegistryEntry instance with a ClassificationNode within 316
a classification scheme. Classification is described in detail in chapter 11. 317

6.8 Package 318

Package instances are RegistryEntries that group logically related 319
RegistryEntries together. One use of a Package is to allow operations to be 320
performed on an entire package of objects. For example all objects belonging to 321
a Package may be deleted in a single request. 322

6.9 AuditableEvent 323

AuditableEvent instances are Objects that are used to provide an audit trail for 324
RegistryEntries. AuditableEvent is described in detail in chapter 8. 325

6.10 User 326

User instances are Objects that are used to provide information about registered 327
users within the registry. User objects are used in audit trail for RegistryEntries. 328
User is described in detail in chapter 8. 329
 330

6.11 PostalAddress 331

PostalAddress is a simple reusable entity class that defines attributes of a postal 332
address. 333
 334

6.12 Organization 335

Organization instances are RegistryEntries that provide information on 336
organizations such as a Submitting Organization. Each Organization instance 337
may have a reference to a parent Organization. 338

7 Registry Information Model: Detail View 339

This chapter covers the information model classes in more detail than the Public 340
View. The detail view introduces some additional classes within the model that 341
were not described in the public view of the information model. 342
 343
Figure 2 shows the inheritance or “is a” relationships between the classes in the 344
information model. Note that it does not show the other types of relationships, 345
such as “has a” relationships, since they have already been shown in a previous 346
figure. Class attributes and class methods are also not shown. Detailed 347
description of methods and attributes of most interfaces and classes will be 348
displayed in tabular form following the description of each class in the model. 349
 350

ebXML Registry January 2000

ebXML Registry Information Model Page 12

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The interface Association will be covered in detail separately in chapter 10. The 351
interfaces Classification and ClassificationNode will be covered in detail 352
separately in chapter 11. 353
 354
The reader is again reminded that the information model is not modeling actual 355
repository items. 356

 357

Figure 2: Information Model Inheritance View 358

 359

7.1 Interface Object 360

All Known Subinterfaces: 361
Association, Classification, ClassificationNode, ExternalLink, 362
ExtrinsicObject, IntrinsicObject, RegistryEntry, Organization, Package, 363
Submission 364

365
Object provides a common base interface for almost all objects in the information 366
model. Information model classes whose instances have a unique identity and an 367
independent life cycle are descendants of the Object class. 368
 369

ebXML Registry January 2000

ebXML Registry Information Model Page 13

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Note that Slot and PostalAddress are not descendants of the Object class 370
because their instances do not have an independent existence and unique 371
identity. They are always a part of some other class's instance (e.g. Organization 372
has a PostalAddress). 373
 374

 375

Method Summary
 AccessControlPolicy getAccessControlPolicy()

 Gets the AccessControlPolicy object associated
with this Object. An AccessControlPolicy defines the
security model associated with the Object in terms of
“who is permitted to do what” with that Object. Maps to
attribute named accessControlPOlicy.

 String getDescription()
 Gets the context independent textual description
for this object. Maps to attribute named description.

 String getName()
 Gets user friendly context independent name of
object in repository. Maps to attribute named name.

 String getID()
 Gets the universally unique ID (UUID) for this
object. Maps to attribute named id.

 void setDescription(String description)
 Sets the context independent textual description for
this object.

 void setName(String name)
 Sets user friendly context independent name of
object in repository.

 void setID(String id)
 Sets the universally unique ID (UUID) for this
object.

 376

377

ebXML Registry January 2000

ebXML Registry Information Model Page 14

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.2 Interface Versionable 377

All Known Subinterfaces: 378

Association, Classification, ClassificationNode, ExternalLink, 379
ExtrinsicObject, IntrinsicObject, RegistryEntry, Organization, Package 380

 381
The Versionable interface defines the behavior common to classes that are 382
capable of creating versions of their instances. At present all RegistryEntry 383
classes are required to implement the Versionable interface. 384

 385

Method Summary

 int getMajorVersion()
 Gets the major revision number for this version of the
Versionable object. Maps to attribute named majorVersion.

 int getMinorVersion()
 Gets the minor revision number for this version of the
Versionable object. Maps to attribute named minorVersion.

 void setMajorVersion(int majorVersion)
 Gets the major revision number for this version of the
Versionable object.

 void setMinorVersion(int minorVersion)
 Sets the minor revision number for this version of the
Versionable object.

 386

7.3 Interface RegistryEntry 387

All Superinterfaces: 388
Object, Versionable 389

All Known Subinterfaces: 390

Association, Classification, ClassificationNode, ExternalLink, 391
ExtrinsicObject, IntrinsicObject, Organization, Package 392

393
RegistryEntry is a common base class for all metadata describing submitted 394
content whose life cycle is managed by the registry. Metadata describing content 395
submitted to the registry is further specialized by the ExtrinsicObject and 396
IntrinsicObject subclasses of RegistryEntry. 397
 398
 399
 400

401

ebXML Registry January 2000

ebXML Registry Information Model Page 15

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary
Collection getAssociatedObjects()

 Returns the collection of Objects associated with this
object. Maps to attribute named associatedObjects.

 Collection getAuditTrail()
 Returns the complete audit trail of all requests that
effected a state change in this object as an ordered Collection
of AuditableEvent objects. Maps to attribute named
auditTrail.

Collection getClassificationNodes()
 Returns the collection of ClassificationNodes associated
with this object. Maps to attribute named
classificationNodes.

 Collection getExternalLinks()
 Returns the collection of ExternalLinks associated with
this object. Maps to attribute named externalLinks.

 String getObjectType()
 Gets the pre-defined object type associated with this
RegistryEntry. This should be the name of a object type as
described in 7.3.2. Maps to attribute named objectType.

Collection getPackages()
 Returns the collection of Packages associated with this
object. Maps to attribute named packages.

 String getStatus()
 Gets the life cycle status of the RegistryEntry within the
Registry. This should be the name of a RegistryEntry status
type as described in 7.3.1. Maps to attribute named status.

String getUserVersion()
 Gets the userVersion attribute of the RegistryEntry within
the Registry. The userVersion is the version for the
RegistryEntry as assigned by the user.

void setUserVersion(String UserVersion)
 Sets the userVersion attribute of the RegistryEntry within
the Registry.

String getStability()
 Gets the stability indicator for the RegistryEntry within the
Registry. The stability indicator is provided by the submitter as a
guarentee of the level of stability for the content. This should be
the name of a stability type as described in 7.3.3. Maps to
attribute named stability.

Date getExpirationDate()
 Gets expirationDate attribute of the RegistryEntry within
the Registry. This attribute defines a time limit upon the stability

ebXML Registry January 2000

ebXML Registry Information Model Page 16

Copyright © ebXML 2000 & 2001. All Rights Reserved.

guarentee provided by the stability attribute. Once the
expirationDate has been reached the stability attribute in effect
becomes STABILITY_DYNAMIC implying that content can
change at any time and in any manner. A null value implies that
there is no expiration on stability attribute. Maps to attribute
named expirationDate.

void setExpirationDate(Date ExpirationDate)
 Sets expirationDate attribute of the RegistryEntry within
the Registry.

Collection getSlots()
 Gets the collection of slots that have been dynamically
added to this object. Maps to attribute named slots.

void addSlots(Collection newSlots)
 Adds one or more slots to this object. Slot names must be
locally unique within this object. Any existing slots are not
effected.

void removeSlots(Collection slotNames)
 Removes one or more slots from this object. Slots to be
removed are identified by their name.

 402

Methods inherited from interface Object
getAccessControlPolicy, getDescription, getName, getID, setDescription,
setName, setID

 403

Methods inherited from interface Versionable
getMajorVersion, getMinorVersion, setMajorVersion, setMinorVersion

7.3.1 Pre-defined RegistryEntry Status Types 404

The following table lists pre-defined choices for RegistryEntry status attribute. 405
These pre-defined status types are defined as a Classification scheme. While the 406
scheme may easily be extended, a registry must support the status types listed 407
below. 408

 409

Name Description
Submitted Status of a RegistryEntry that catalogues content that has

been submitted to the Registry.
Approved Status of a RegistryEntry that catalogues content that has

been submitted to the Registry and has been subsequently
approved.

Deprecated Status of a RegistryEntry that catalogues content that has

ebXML Registry January 2000

ebXML Registry Information Model Page 17

Copyright © ebXML 2000 & 2001. All Rights Reserved.

been submitted to the Registry and has been subsequently
deprecated.

Withdrawn Status of a RegistryEntry that catalogues content that has
been withdrawn from the Registry.

7.3.2 Pre-Defined Object Types 410

The following table lists pre-defined object types. Note that for an ExtrinsicObject 411
there are many types defined based on the type of repository item the 412
ExtrinsicObject catalogs. In addition there there are object types defined for 413
IntrinsicObject sub-classes that may have concrete instances. 414
 415
These pre-defined object types are defined as a Classification scheme. While the 416
scheme may easily be extended a registry must support the object types listed 417
below. 418

 419

name description
Unknown An ExtrinsicObject that catalogues content whose type is

unspecified or unknown.
CPA An ExtrinsicObject of this type catalogues an XML

document
Collaboration Protocol Agreement (CPA) representing a
technical agreement between two parties on how they plan
to communicate with each other using a specific protocol.

CPP An ExtrinsicObject of this type catalogues an XML
document called Collaboration Protocol Profile (CPP) that
provides information about a party participating in a
business transaction.

Process An ExtrinsicObject of this type catalogues a process
description document.

Role An ExtrinsicObject of this type catalogues an XML
description of a Role in a Collaboration Protocol Profile
(CPP).

ServiceInterface An ExtrinsicObject of this type catalogues an XML
description of a service interface as defined by [CPA].

SoftwareComponent An ExtrinsicObject of this type catalogues a software
component (e.g., an EJB or class library).

Transport An ExtrinsicObject of this type catalogues an XML
description of a transport configuration as defined by
[CPA].

UMLModel An ExtrinsicObject of this type catalogues a UML model.
XMLSchema An ExtrinsicObject of this type catalogues an XML schema

ebXML Registry January 2000

ebXML Registry Information Model Page 18

Copyright © ebXML 2000 & 2001. All Rights Reserved.

(DTD, XML Schema, RELAX grammar, etc.).
Package A Package object

ExternalLink An ExternalLink object
ExternalIdentifier An ExternalIdentifier object

Association An Association object
Classification A Classification object

ClassificationNode A ClassificationNode object
AuditableEvent An AuditableEvent object

User A User object
Organization An Organization object

 420

7.3.3 Pre-defined RegistryEntry Stability Enumerations 421

The following table lists pre-defined choices for RegistryEntry stability attribute. 422
These pre-defined stability types are defined as a Classification scheme. While 423
the scheme may easily be extended, a registry must support the stability types 424
listed below. 425

 426

Name Description
Dynamic Stability of a RegistryEntry that indicates that the content is

dynamic and may be changed arbitrarily by submitter at any
time.

DynamicCompatible Stability of a RegistryEntry that indicates that the content is
dynamic and may be changed in a backward compatible
way by submitter at any time.

Static Stability of a RegistryEntry that indicates that the content is
static and will not be changed by submitter.

 427
 428

7.4 Interface Slot 429

 430
Slot instances provide a dynamic way to add arbitrary attributes to RegistryEntry 431
instances. This ability to add attributes dynamically to RegistryEntry instances 432
enables extensibility within the Registry Information Model. 433
 434
In this model, a RegistryEntry may have 0 or more Slots. A slot is composed of a 435
name, a slotType and a collection of values. The name of slot is locally unique 436
within the RegistryEntry instance. Similarly, the value of a Slot is locally unique 437
within a slot instance. Since a Slot represent an extensible attribute whose value 438

ebXML Registry January 2000

ebXML Registry Information Model Page 19

Copyright © ebXML 2000 & 2001. All Rights Reserved.

may be a collection, therefore a Slot is allowed to have a collection of values 439
rather than a single value. The slotType attribute may optionally specify a type or 440
category for the slot. 441
 442

 443

Method Summary

 String getName()
 Gets the name of this object. Maps to attribute named
name.

 void setName(String name)
 Sets the name of this object. Slot names are locally
unique within a RegistryEntry instance.

 String getSlotType()
 Gets the slotType or category for this slot. Maps to
attribute named slotType.

 void
setSlotType(String slotType)
 Sets the slotType or category for this slot.

 Collection getValues()
 Gets the collection of values for this object. The type for
each value is String. Maps to attribute named values.

 void
setValues(Collection values)
 Sets the collection of values for this object.

 444

7.5 Interface ExtrinsicObject 445

All Superinterfaces: 446
RegistryEntry, Object, Versionable 447

 448
ExtrinsicObjects provide metadata that describes submitted content whose type 449
is not intrinsically known to the registry and therefore must be described by 450
means of additional attributes (e.g., mime type). 451
 452
Examples of content described by ExtrinsicObject include Collaboration Protocol 453
Profiles (CPP), business process descriptions, and schemas. 454

 455

Method Summary
 String getContentURI()

 Gets the URI to the content catalogued by this ExtrinsicObject.

ebXML Registry January 2000

ebXML Registry Information Model Page 20

Copyright © ebXML 2000 & 2001. All Rights Reserved.

A registry must guarantee that this URI is resolvable. Maps to attribute
named contentURI.

 String getMimeType()
 Gets the mime type associated with the content catalogued by
this ExtrinsicObject. Maps to attribute named mimeType.

 boolean isOpaque()
 Determines whether the content catalogued by this
ExtrinsicObject is opaque to (not readable by) the Registry. In some
situations, a Submitting Organization may submit content that is
encrypted and not even readable by the Registry. Maps to attribute
named opaque.

 void setContentURI(String uri)
 Sets the URI to the content catalogued by this ExtrinsicObject.

 void setMimeType(String mimeType)
 Sets the mime type associated with the content catalogued by
this ExtrinsicObject.

 void setOpaque(boolean isOpaque)
 Sets whether the content catalogued by this ExtrinsicObject is
opaque to (not readable by) the Registry.

 456

Note that methods inherited from the base interfaces of this interface are not 457
shown. 458

7.6 Interface IntrinsicObject 459

All Superinterfaces: 460

RegistryEntry, Object, Versionable 461
All Known Subinterfaces: 462

Association, Classification, ClassificationNode, ExternalLink, Organization, 463
Package 464

 465
IntrinsicObject serve as a common base class for derived classes that catalogue 466
submitted content whose type is known to the Registry and defined by the 467
ebXML registry specifications. 468
 469
This interface currently does not define any attributes or methods. Note that 470
methods inherited from the base interfaces of this interface are not shown. 471
 472

7.7 Interface Package 473

All Superinterfaces: 474
IntrinsicObject, RegistryEntry, Object, Versionable 475

 476

ebXML Registry January 2000

ebXML Registry Information Model Page 21

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Logically related registry entries may be grouped into a Package. It is anticipated 477
that Registry Services will allow operations to be performed on an entire package 478
of objects in the future. 479
 480

 481

Method Summary
 Collection getMemberObjects()

 Get the collection of RegistryEntries that are members of this
Package. Maps to attribute named memberObjects.

 482

7.8 Interface ExternalIdentifier 483

All Superinterfaces: 484

IntrinsicObject, RegistryEntry, Object, Versionable 485

 486
ExternalIdentifier instances provide the additional identifier information to 487
RegistryEntry such as DUNS number, Social Security Number, or an alias name 488
of the organization. The attribute name inherited from Object is used to contain 489
the identification scheme (Social Security Number, etc), and the attribute value 490
contains the actual information. Each RegistryEntry may have 0 or more 491
association(s) with ExternalIdentifier. 492
See Also: 493

 494

Method Summary
 String getValue()

 Gets the value of this ExternalIdentifier. Maps to
attribute named value.

Void setValue(String value)
 Sets the value of this ExternalIdentifier.

 495
Note that methods inherited from the base interfaces of this interface are not 496
shown. 497

7.9 Interface ExternalLink 498

All Superinterfaces: 499
IntrinsicObject, RegistryEntry, Object, Versionable 500

 501
ExternalLinks use URIs to associate content in the registry with content that may 502
reside outside the registry. For example, an organization submitting a DTD could 503
use an ExternalLink to associate the DTD with the organization's home page. 504
 505

 506

ebXML Registry January 2000

ebXML Registry Information Model Page 22

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary
 Collection getLinkedObjects()

 Gets the collection of objects that use this external link.
Maps to attribute named linkedObjects.

 URI getExternalURI()
 Gets URI to the external content. Maps to attribute named
externalURI.

 void setExternalURI(URI uri)
 Sets URI to the external content.

 507
Note that methods inherited from the base interfaces of this interface are not 508
shown. 509

8 Registry Audit Trail 510

This chapter describes the information model elements that support the audit trail 511
capability of the Registry. Several classes in this chapter are entity classes that 512
are used as wrappers to model a set of related attributes. These entity classes 513
do not have any associated behavior. They are analogous to the “struct” 514
construct in the C programming language. 515
 516
The getAuditTrail() method of a RegistryEntry returns an ordered Collection of 517
AuditableEvents. These AuditableEvents constitute the audit trail for the 518
RegistryEntry. AuditableEvents include a timestamp for the event. Each 519
AuditableEvent has a refernce to a User identifying the specific user that 520
performed an action that resulted in an AuditableEvent. Each User is affiliated 521
with an Organization, which is usually the submitting Organization. 522

8.1 Interface AuditableEvent 523

All Superinterfaces: 524
Object 525

 526
AuditableEvent instances provide a long-term record of events that effect a 527
change of state in a RegistryEntry. A RegistryEntry is associated with an ordered 528
Collection of AuditableEvent instances that provide a complete audit trail for that 529
Object. 530
 531
AuditableEvents are usually a result of a client-initiated request. AuditableEvent 532
instances are generated by the Registry service to log such events. 533
 534
Often such events effect a change in the life cycle of a RegistryEntry. For 535
example a client request could Create, Update, Deprecate or Delete a 536
RegistryEntry. No AuditableEvent is created for requests that do not alter the 537
state of a RegistryEntry. Specifically, read-only requests do not generate an 538

ebXML Registry January 2000

ebXML Registry Information Model Page 23

Copyright © ebXML 2000 & 2001. All Rights Reserved.

AuditableEvent. No AuditableEvent is generated for a RegistryEntry when it is 539
classified, assigned to a Package or associated with another Object. 540
 541

 542

8.1.1 Pred-defined Auditable Event Types 543

The following table lists pre-defined auditable event types. These pre-defined 544
event types are defined as a Classification scheme. While the scheme may 545
easily be extended, a registry must support the event types listed below. 546

 547

Name description
Created An event that created a RegistryEntry.
Deleted An event that deleted a RegistryEntry.

Deprecated An event that deprecated a RegistryEntry.
Updated An event that updated the state of a RegistryEntry.

Versioned An event that versioned a RegistryEntry.

 548

Method Summary
 User getUser()

 Gets the User that sent the request that generated
this event. Maps to attribute named user.

 String getEventType()
 The type of this event as defined by the name
attribute of an event type as defined in section 8.1.1. Maps
to attribute named eventType.

 RegistryEntry getRegistryEntry()
 Gets the RegistryEntry associated with this
AuditableEvent. Maps to attribute named
registryEntry.

 Timestamp getTimestamp()
 Gets the Timestamp for when this event occured.
Maps to attribute named timestamp.

 549

Note that methods inherited from the base interfaces of this interface are not 550
shown. 551

8.2 Interface User 552

All Superinterfaces: 553
Object 554

 555

ebXML Registry January 2000

ebXML Registry Information Model Page 24

Copyright © ebXML 2000 & 2001. All Rights Reserved.

User instances are used in an AuditableEvent to keep track of the identity of the 556
requestor that sent the request that generated the AuditableEvent. 557

 558

Method Summary
 Organization getOrganization()

 Gets the Submitting Organization that sent the request
that effected this change. Maps to attribute named
organization.

 PostalAddress getAddress()
 Gets the postal address for this user. Maps to attribute
named address.

 String getEmail()
 Gets the email address for this user. Maps to attribute
named email.

 TelephoneNumber getFax()
 The FAX number for this user. Maps to attribute named
fax.

 TelephoneNumber getMobilePhone()
 The mobile telephone number for this user. Maps to
attribute named mobilePhone.

 PersonName getName()
 Name of contact person. Maps to attribute named
name.

 TelephoneNumber getPager()
 The pager telephone number for this user. Maps to
attribute named pager.

 TelephoneNumber getTelephone()
 The default (land line) telephone number for this user.
Maps to attribute named telephone.

 URL getUrl()
 The URL to the web page for this contact. Maps to
attribute named url.

 559

8.3 Interface Organization 560

All Superinterfaces: 561
IntrinsicObject, RegistryEntry, Object, Versionable 562

 563
Organization instances provide information on organizations such as a 564
Submitting Organization. Each Organization instance may have a reference to a 565
parent Organization. In addition it may have a contact attribute defining the 566

ebXML Registry January 2000

ebXML Registry Information Model Page 25

Copyright © ebXML 2000 & 2001. All Rights Reserved.

primary contact within the organization. An Organization also has an address 567
attribute. 568
See Also: 569

 570

Method Summary
 PostalAddress getAddress()

 Gets the PostalAddress for this Organization. Maps to
attribute named address.

 User getPrimaryContact()
 Gets the primary Contact for this Organization. The
primary contact is a reference to a User object. Maps to
attribute named primaryContact.

 TelephoneNumber getFax()
 Gets the FAX number for this Organization. Maps to
attribute named fax.

 Organization getParent()
 Gets the parent Organization for this Organization.
Maps to attribute named parent.

 TelephoneNumber getTelephone()
 Gets the main telephone number for this Organization.
Maps to attribute named telephone.

 571
Note that methods inherited from the base interfaces of this interface are not 572
shown. 573
 574

8.4 Class PostalAddress 575

 576

 577
PostalAddress is a simple reusable entity class that defines attributes of a postal 578
address. 579

 580
Field Summary

 String city
 The city

 String country
 The country

 String postalCode
 The postal or zip code

 String state
 The state

 String street
 The street

ebXML Registry January 2000

ebXML Registry Information Model Page 26

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 581

8.5 Class TelephoneNumber 582

 583
 584

 585
A simple reusable entity class that defines attributes of a telephone number. 586

 587
Field Summary

 String areaCode
 Area code

 String countryCode
 country code

 String extension
 internal extension if any

 String number
 The telephone number suffix not including the country or
area code.

 String url
 A URL that can dial this number electronically

 588

8.6 Class PersonName 589

 590
A simple entity class for a person’s name. 591
 592

 593
Field Summary

 String firstName
 The first name for this person.

 String lastName
 The last name (surname) for this person.

 String middleName
 The middle name for this person.

 594

9 Registry Entry Naming 595

A RegistryEntry has a name that may or may not be unique within the Registry. 596
 597
In addition a RegistryEntry may have any number of context sensitive alternate 598
names that are valid only in the context of a particular classification scheme. 599

ebXML Registry January 2000

ebXML Registry Information Model Page 27

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Alternate contextual naming will be addressed in a later version of the Registry 600
Information Model. 601
 602

10 Association of Registry Entries 603

A RegistryEntry may be associated with 0 or more objects. The information 604
model defines an Association class. An instance of the Association class 605
represents an association between a RegistryEntry and another Object. An 606
example of such an association is between ExtrinsicObjects that catalogue a new 607
Collaboration Protocol Profile (CPP) and an older Collaboration Protocol Profile 608
where the newer CPP supersedes the older CPP as shown in Figure 3. 609

 610

Figure 3: Example of Registry Entry Association 611

 612

10.1 Interface Association 613

All Superinterfaces: 614

IntrinsicObject, RegistryEntry, Object, Versionable 615
All Known Subinterfaces: 616

Classification 617
 618
Association instances are used to define many-to-many associations between 619
objects in the information model. 620
 621
An instance of the Association class represents an association between two 622
Objects. 623
 624

625

 626

Method Summary

ebXML Registry January 2000

ebXML Registry Information Model Page 28

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 String getAssociationType()
 Gets the association type for this Association. This must be the
name attribute of an association type as defined by 10.1.1. Maps to
attribute named associationType.

 Object getSourceObject()
 Gets the Object that is the source of this Association. Maps to
attribute named sourceObject.

 String getSourceRole()
 Gets the name of the role played by the source Object in this
Association. Maps to attribute named sourceRole.

 Object getTargetObject()
 Gets the Object that is the target of this Association. Maps to
attribute named targetObject.

 String getTargetRole()
 Gets the name of the role played by the target Object in this
Association. Maps to attribute named targetRole.

 boolean isBidirectional()
 Determine whether this Association is bi-directional. Maps to
attribute named bidirectional.

 void setBidirectional(boolean bidirectional)
 Set whether this Association is bi-directional.

 void setSourceRole(String sourceRole)
 Sets the name of the role played by the source Object in this
Association.

 void setTargetRole(String targetRole)
 Sets the name of the role played by the destination Object in this
Association.

10.1.1 Pre-defined Association Types 627

The following table lists pre-defined association types. These pre-defined 628
association types are defined as a Classification scheme. While the scheme may 629
easily be extended a registry must support the association types listed below. 630

 631

name description
RelatedTo Defines that source object is an instance of target object.
Packages Defines that the source Package object packages the

target RegistryEntry object. Reserved for use in
Packaging of Registry Entries.

ExternallyLinks Defines that the source ExternalLink object externally

ebXML Registry January 2000

ebXML Registry Information Model Page 29

Copyright © ebXML 2000 & 2001. All Rights Reserved.

links the target RegistryEntry object. Reserved for use in
associating ExternalLinks with Registry Entries.

ExternallyIdentifies Defines that the source ExternalIdentifier object identifies
the target RegistryEntry object. Reserved for use in
associating ExternalIdentifiers with Registry Entries.

ContainedBy Defines that source object is contained by the target
object.

Contains Defines that source object contains the target object.
Extends Defines that source object inherits from or specializes

the target object.
Implements Defines that source object implements the functionality

defined by the target object.
InstanceOf Defines that source object is an instance of target object.

SupercededBy Defines that the source object is superseded by the
target object.

Supercedes Defines that the source object supersedes the target
object.

UsedBy Defines that the source object is used by the target
object in some manner.

Uses Defines that the source object uses the target object in
some manner.

ReplacedBy Defines that the source object is replaced by the target
object in some manner.

Replaces Defines that the source object replaces the target object
in some manner.

 632

11 Classification of Registry Entries 633

This section describes the how the information model supports classification of 634
RegistryEntries. It is a simplified version of the OASIS classification model [OAS]. 635
 636
A RegistryEntry may be classified in many ways. For example the RegistryEntry 637
for the same Collaboration Protocol Profile (CPP) may be classified by its 638
industry, by the products it sells and by its geographical location. 639
 640
A general classification scheme can be viewed as a classification tree. In the 641
example shown in Figure 4, RegistryEntries representing Collaboration Protocol 642
Profiles are shown as shaded boxes. Each Collaboration Protocol Profile 643
represents an automobile manufacturer. Each Collaboration Protocol Profile is 644
classified by the ClassificationNode named Automotive under the root 645
ClassificationNode named Industry. Furthermore, the US Automobile 646
manufacturers are classified by the US ClassificationNode under the Geography 647

ebXML Registry January 2000

ebXML Registry Information Model Page 30

Copyright © ebXML 2000 & 2001. All Rights Reserved.

ClassificationNode. Similarly, a European automobile manufacturer is classified 648
by the Europe ClassificationNode under the Geography ClassificationNode. 649
 650
The example shows how a RegistryEntry may be classified by multiple 651
classification schemes. A classification scheme is defined by a 652
ClassificationNode that is the root of a classification tree (e.g. Industry, 653
Geography). 654

 655

Figure 4: Example showing a Classification Tree 656

[Note]It is important to point out that the dark 657
nodes (gasGuzzlerInc, yourDadsCarInc etc.) are 658
not part of the classification tree. The leaf 659
nodes of the classification tree are Health 660
Care, Automotive, Retail, US and Europe. The 661
dark nodes are associated with the 662
classification tree via a Classification 663
instance that is not shown in the picture 664

 665
In order to support a general classification scheme that can support single level 666
as well as multi-level classifications, the information model defines the classes 667
and relationships shown in Figure 5. 668

ebXML Registry January 2000

ebXML Registry Information Model Page 31

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 669

Figure 5: Information Model Classification View 670

A Classification is a specialized form of an Association. Figure 6 shows an 671
example of an ExtrinsicObject instance for a Collaboration Protocol Profile (CPP) 672
object that is classified by a ClassificationNode representing the Industry that it 673
belongs to. 674

 675

Figure 6: Classification Instance Diagram 676

11.1 Interface ClassificationNode 677

All Superinterfaces: 678

IntrinsicObject, RegistryEntry, Object, Versionable 679

 680
ClassificationNode instances are used to define tree structures where each node 681
in the tree is a ClassificationNode. Such classification trees constructed with 682
ClassificationNodes are used to define classification schemes or ontologies. 683
See Also: 684

Classification 685
 686

 687

Method Summary
 Collection getClassifiedObjects()

 Get the collection of RegistryEntries classified by

ebXML Registry January 2000

ebXML Registry Information Model Page 32

Copyright © ebXML 2000 & 2001. All Rights Reserved.

this ClassificationNode. Maps to attribute named
classifiedObjects.

 ClassificationNode getParent()
 Gets the parent ClassificationNode for this
ClassificationNode. Maps to attribute named parent.

String getPath()
 Gets the path from the root ancestor of this
ClassificationNode. The path conforms to the [XPATH]
expression syntax (e.g “/Geography/Asia/Japan”). Maps to
attribute named path.

 void setParent(ClassificationNode parent)
 Sets the parent ClassificationNode for this
ClassificationNode.

 String getCode()
 Gets the code for this ClassificationNode. See [11.4]
for details. Maps to attribute named code.

 void setCode(String code)
 Sets the parent code for this ClassificationNode.
See [11.4] for details.

 688
Note that methods inherited from the base interfaces of this interface are not 689
shown. 690
 691
In Figure 4, several instances of ClassificationNode are defined (all light colored 692
boxes). A ClassificationNode has zero or one ClassificationNodes for its parent 693
and zero or more ClassificationNodes for its immediate children. If a 694
ClassificationNode has no parent then it is the root of a classification tree. Note 695
that the entire classification tree is recursively defined by a single information 696
model element ClassificationNode. 697
 698

11.2 Interface Classification 699

All Superinterfaces: 700
IntrinsicObject, RegistryEntry, Object, Versionable 701

 702
Classification instances are used to classify repository item by associating their 703
RegistryEntry instance with a ClassificationNode instance within a classification 704
scheme. 705
 706
In Figure 4, Classification instances are not explicitly shown but are implied as 707
associations between the RegistryEntries (shaded leaf node) and the associated 708
ClassificationNode 709
 710

ebXML Registry January 2000

ebXML Registry Information Model Page 33

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary
 Object getClassifiedObject()

 Gets the Object that is classified by this Classification. Maps to
attribute named classifiedObject.

 Object getClassificationNode()
 Gets the ClassificationNode that classifies the object in this
Classification. Maps to attribute named classificationNode.

Note that methods inherited from the base interfaces of this interface are not 711
shown. 712

11.2.1 Context Sensitive Classification 713

Consider the case depicted in Figure 7 where a Collaboration Protocol Profile for 714
ACME Inc. is classified by the Japan ClassificationNode under the Geography 715
classification scheme. In the absence of the context for this classification its 716
meaning is ambiguous. Does it mean that ACME is located in Japan, or does it 717
mean that ACME ships products to Japan, or does it have some other meaning? 718
To address this ambiguity a Classification may optionally be associated with 719
another ClassificationNode (in this example named isLocatedIn) that provides the 720
missing context for the Classification. Another Collaboration Protocol Profile for 721
MyParcelService may be classified by the Japan ClassificationNode where this 722
Classification is associated with a different ClassificationNode (e.g. named 723
shipsTo) to indicate a different context than the one used by ACME Inc. 724

ebXML Registry January 2000

ebXML Registry Information Model Page 34

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 725

Figure 7: Context Sensitive Classification 726

Thus, in order to support the possibility of Classification within multiple contexts, 727
a Classification is itself classified by any number of Classifications that bind the 728
first Classification to ClassificationNodes that provide the missing contexts. 729
 730
In summary, the generalized support for classification schemes in the information 731
model allows: 732

o A RegistryEntry to be classified by defining a Classification that associates it 733
with a ClassificationNode in a classification tree. 734

o A RegistryEntry to be classified along multiple facets by having multiple 735
classifications that associate it with multiple ClassificationNodes. 736

o A classification defined for a RegistryEntry to be qualified by the contexts in 737
which it is being classified. 738

11.3 Example of Classification Schemes 739

The following table lists some examples of possible classification schemes 740
enabled by the information model. These schemes are based on a subset of 741
contextual concepts identified by the ebXML Business Process and Core 742
Components Project Teams. This list is meant to be illustrative not prescriptive. 743
 744

ebXML Registry January 2000

ebXML Registry Information Model Page 35

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 745
Classification

Scheme
(Context)

Usage Example

Industry Find all Parties in Automotive industry
Process Find a ServiceInterface that implements a Process
Product Find a business that sells a product
Locale Find a Supplier located in Japan
Temporal Find Supplier that can ship with 24 hours
Role Find All Suppliers that have a role of “Seller”

Table 1: Sample Classification Schemes 746

11.4 Standardized Taxonomy Support 747

Standardized taxonomies also referred to as ontologies or coding schemes exist 748
in various industries to provide a structured coded vocabulary. The ebXML 749
registry does not define support for specific taxonomies. Instead it provides a 750
general capability to link RegistryItems to codes defined by various taxonomies. 751
 752
The information model provides two alternatives for using standardized 753
taxonomies for classification of RegistryItems. 754

11.4.1 Full-featured Taxonomy Based Classification 755

The information model provides a full-featured taxonomy based classification 756
alternative based Classification and ClassificationNode instances. This 757
alternative requires that a standard taxonomy be imported into the Registry as a 758
classification tree consisting of ClassificationNode instances. This specification 759
does not prescribe the transformation tools necessary to convert standard 760
taxonomies into ebXML Registry classification trees. However, the transformation 761
must ensure that: 762

1. The name attribute of the root ClassificationNode is the name of the 763
standard taxonomy (e.g. NAICS, ICD-9, SNOMED) 764

2. All codes in the standard taxonomy are preserved in the code attribute of 765
a ClassificationNode 766

3. The intended structure of the standard taxonomy is preserved in the 767
ClassificationNode tree, thus allowing polymorphic browse and drill down 768
discovery. This means that is searching for entries classified by Asia will 769
find entries classified by descendants of Asia (e.g. Japan and Korea). 770

11.4.2 Light Weight Taxonomy Based Classification 771

The information model also provides a lightweight alternative for classifying 772
RegistryEntry instances by codes defined by standard taxonomies, where the 773
submitter does not wish to import an entire taxonomy as a native classification 774
scheme. 775

ebXML Registry January 2000

ebXML Registry Information Model Page 36

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 776
In this alternative the submitter adds one or more taxonomy related Slots to the 777
RegistryEntry for a submitted repository item. Each Slot’s name identifies a 778
standardized taxonomy while the Slot’s value is the code within the specified 779
taxonomy. Such taxonomy related slots must be defined with a slotType of 780
Classification. 781

 782
For example if a RegistryEntry has a Slot with name “NAICS”, a slotType of 783
“Classification” and a value “51113” it implies that the RegistryEntry is classified 784
by the code for “Book Publishers” in the NAICS taxonomy. Note that in this 785
example, there is no need to import the entire NAICS taxonomy, nor is there any 786
need to create instances of ClassificationNode or Classification. 787
 788
The following points are noteworthy in this light weight classification alternative: 789

?? Validation of the name and the value of the Classification" is responsibility 790
of the SO and not of the ebXML Registry itself. 791

?? Discovery is based on exact match on slot name and slot value rather 792
than the flexible “browse and drill down discovery” available to the heavy 793
weight classification alternative. 794

 795

12 Information Model: Security View 796

This chapter describes the aspects of the information model that relate to the 797
security features of the Registry. 798
 799
Figure 8 shows the view of the objects in the Registry from a security 800
perspective. It shows object relationships as a UML class diagram. It does not 801
show class attributes or class methods that will be described in subsequent 802
sections. It is meant to be illustrative not prescriptive. 803
 804

ebXML Registry January 2000

ebXML Registry Information Model Page 37

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 805

Figure 8: Information Model: Security View 806

12.1 Interface AccessControlPolicy 807

Every Object is associated with exactly one AccessControlPolicy which defines 808
the policy rules that govern access to operations or methods performed on that 809
Object. Such policy rules are defined as a collection of Permissions. 810
 811
 812

 813
 814

ebXML Registry January 2000

ebXML Registry Information Model Page 38

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary
 Collection getPermissions()

 Gets the Permissions defined for this AccessControlPolicy.
Maps to attribute named permissions.

 815

12.2 Interface Permission 816

 817
The Permission object is used for authorization and access control to Objects in 818
the Registry. The Permissions for an Object are defined in an 819
AccessControlPolicy object. 820
 821
A Permission object authorizes access to a method in an Object if the requesting 822
Principal has any of the Privileges defined in the Permission. 823
See Also: 824

Privilege, AccessControlPolicy 825

 826

Method Summary
 String getMethodName()

 Gets the method name that is accessible to a Principal with
specified Privilege by this Permission. Maps to attribute named
methodName.

 Collection getPrivileges()
 Gets the Privileges associated with this Permission. Maps to
attribute named privileges.

 827

12.3 Interface Privilege 828

 829
A Privilege object contains zero or more PrivilegeAttributes. A PrivilegeAttribute 830
can be a Group, a Role, or an Identity. 831
 832
A requesting Principal must have all of the PrivilegeAttributes specified in a 833
Privilege in order to gain access to a method in a protected Object. Permissions 834
defined in the Object's AccessControlPolicy define the Privileges that can 835
authorize access to specific methods. 836
 837
This mechanism enables the flexibility to have object access control policies that 838
are based on any combination of Roles, Identities or Groups. 839
See Also: 840

PrivilegeAttribute, Permission 841
 842

ebXML Registry January 2000

ebXML Registry Information Model Page 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 843

 844

Method Summary
 Collection getPrivilegeAttributes()

 Gets the PrivilegeAttributes associated with this Privilege.
Maps to attribute named privilegeAttributes.

 845

12.4 Interface PrivilegeAttribute 846

All Known Subinterfaces: 847
Group, Identity, Role 848

 849
PrivilegeAttribute is a common base class for all types of security attributes that 850
are used to grant specific access control privileges to a Principal. A Principal may 851
have several different types of PrivilegeAttributes. Specific combination of 852
PrivilegeAttributes may be defined as a Privilege object. 853
See Also: 854

Principal, Privilege 855

12.5 Interface Role 856

All Superinterfaces: 857
PrivilegeAttribute 858

 859
A security Role PrivilegeAttribute. For example a hospital may have Roles such 860
as Nurse, Doctor, Administrator etc. Roles are used to grant Privileges to 861
Principals. For example a Doctor role may be allowed to write a prescription but a 862
Nurse role may not. 863

12.6 Interface Group 864

All Superinterfaces: 865
PrivilegeAttribute 866

 867
A security Group PrivilegeAttribute. A Group is an aggregation of users that may 868
have different roles. For example a hospital may have a Group defined for 869
Nurses and Doctors that are participating in a specific clinical trial (e.g. 870
AspirinTrial group). Groups are used to grant Privileges to Principals. For 871
example the members of the AspirinTrial group may be allowed to write a 872
prescription for Aspirin (even though Nurse role as a rule may not be allowed to 873
write prescriptions). 874

12.7 Interface Identity 875

All Superinterfaces: 876

ebXML Registry January 2000

ebXML Registry Information Model Page 40

Copyright © ebXML 2000 & 2001. All Rights Reserved.

PrivilegeAttribute 877

 878
A security Identity PrivilegeAttribute. This is typically used to identify a person, an 879
organization, or software service. Identity attribute may be in the form of a digital 880
certificate. 881

12.8 Interface Principal 882

 883
Principal is a completely generic term used by the security community to include 884
both people and software systems. The Principal object is an entity that has a set 885
of PrivilegeAttributes. These PrivilegeAttributes include at least one identity, and 886
optionally a set of role memberships, group memberships or security clearances. 887
A principal is used to authenticate a requestor and to authorize the requested 888
action based on the PrivilegeAttributes associated with the Principal. 889
See Also: 890

PrivilegeAttributes, Privilege, Permission 891

 892

Method Summary
 Collection getGroups()

 Gets the Groups associated with this Principal. Maps to
attribute named groups.

 Collection getIdentities()
 Gets the Identities associated with this Principal. Maps to
attribute named identities.

 Collection getRoles()
 Gets the Roles associated with this Principal. Maps to
attribute named roles.

 893

894

ebXML Registry January 2000

ebXML Registry Information Model Page 41

Copyright © ebXML 2000 & 2001. All Rights Reserved.

13 References 894

[GLS] ebXML Glossary, http://www.ebxml.org/documents/199909/terms_of_reference.htm 895

[TA] ebXML Technical Architecture 896

[OAS] OASIS Information Model 897

http://www.nist.gov/itl/div897/ctg/regrep/oasis-work.html 898

[ISO] ISO 11179 Information Model 899

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba78525662100900
5419d7/b83fc7816a6064c68525690e0065f913?OpenDocument 901

[BDM] Registry and Repository: Business Domain Model 902

http://www.ebxml.org/specdrafts/RegRepv1-0.pdf 903

[RS] ebXML Registry Services Specification 904
http://www.ebxml.org/project_teams/registry/private/RegistryServicesSpec905
ificationv0.83.pdf 906

[BPM] ebXML Business Process Metamodel Specification Schema 907

http://www.ebxml.org/specdrafts/Busv2-0.pdf 908

[CPA] Trading-Partner Specification 909

http://www.ebxml.org/project_teams/trade_partner/private/ 910

[CTB] Context table informal document from Core Components 911
http://www.ebxml.org/project_teams/core_components/ContextTable.doc 912

[XPATH] XML Path Language (XPath) Version 1.0 913
http://www.w3.org/TR/xpath 914

 915

14 Disclaimer 916

The views and specification expressed in this document are those of the authors 917
and are not necessarily those of their employers. The authors and their 918
employers specifically disclaim responsibility for any problems arising from 919
correct or incorrect implementation or use of this design. 920

921

ebXML Registry January 2000

ebXML Registry Information Model Page 42

Copyright © ebXML 2000 & 2001. All Rights Reserved.

15 Contact Information 921

 922
Team Leader 923
 Name: Scott Nieman 924
 Company: Norstan Consulting 925
 Street: 5101 Shady Oak Road 926
 City, State, Postal Code: Minnetonka, MN 55343 927
 Country: USA 928
 Phone: 952.352.5889 929
 Email: Scott.Nieman@Norstan 930
 931
Vice Team Lead 932
 Name: Yutaka Yoshida 933
 Company: Sun Microsystems 934
 Street: 901 San Antonio Road, MS UMPK17-102 935
 City, State, Postal Code: Palo Alto, CA 94303 936
 Country: USA 937
 Phone: 650.786.5488 938
 Email: Yutaka.Yoshida@eng.sun.com 939
 940
Editor 941
 Name: Farrukh S. Najmi 942
 Company: Sun Microsystems 943
 Street: 1 Network Dr., MS BUR02-302 944
 City, State, Postal Code: Burlington, MA, 01803-0902 945
 Country: USA 946
 Phone: 781.442.0703 947
 Email: najmi@east.sun.com 948
 949

950

ebXML Registry January 2000

ebXML Registry Information Model Page 43

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Copyright Statement 950

Copyright © ebXML 2000. All Rights Reserved. 951
 952
 This document and translations of it may be copied and furnished to others, and 953
derivative works that comment on or otherwise explain it or assist in its 954
implementation may be prepared, copied, published and distributed, in whole or 955
in part, without restriction of any kind, provided that the above copyright notice 956
and this paragraph are included on all such copies and derivative works. 957
However, this document itself may not be modified in any way, such as by 958
removing the copyright notice or references to the Internet Society or other 959
Internet organizations, except as needed for the purpose of developing Internet 960
standards in which case the procedures for copyrights defined in the Internet 961
Standards process must be followed, or as required to translate it into languages 962
other than English. 963
 964
 The limited permissions granted above are perpetual and will not be revoked by 965
ebXML or its successors or assigns. 966
 967
 This document and the information contained herein is provided on an 968
 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR 969
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE 970
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 971
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 972
PARTICULAR PURPOSE. 973

