
Copyright © ebXML 2000 & 2001. All Rights Reserved.

 1

ebXML Registry Services 2

ebXML Registry Project Team 3

Working Draft 3/19/2001 4

This version: Version 0.88 5

 6

1 Status of this Document 7

 8

This document specifies an ebXML DRAFT STANDARD for the eBusiness 9
community. 10

 11

Distribution of this document is unlimited. 12

 13

The document formatting is based on the Internet Society’s Standard RFC 14
format. 15

 16

This version: 17

 http://www.ebxml.org/project_teams/registry/private/RegistryServicesSpecificationv0.88.pdf 18

 19

Latest version: 20

 http://www.ebxml.org/project_teams/registry/private/RegistryServicesSpecification.pdf 21

 22

Previous version: 23

 http://www.ebxml.org/project_teams/registry/private/RegistryServicesSpecificationv0.87.pdf 24

 25

 26

ebXML Registry January 2001

ebXML Registry Services Specification Page 2

Copyright © ebXML 2000 & 2001. All Rights Reserved.

2 ebXML participants 27

The authors wish to acknowledge the support of the members of the Registry 28
Project Team who contributed ideas to this specification by the group’s 29
discussion e-mail list, on conference calls and during face-to-face meetings. 30

 31
Lisa Carnahan – NIST 32
Joe Dalman - Tie 33
Philippe DeSmedt - Viquity 34
Sally Fuger – AIAG 35
Len Gallagher - NIST 36
Steve Hanna - Sun Microsystems 37
Scott Hinkelman - IBM 38
Michael Kass, NIST 39
Jong.L Kim – Innodigital 40
Sangwon Lim, Korea Institute for Electronic Commerce 41
Bob Miller - GXS 42
Kunio Mizoguchi - Electronic Commerce Promotion Council of Japan 43
Dale Moberg – Sterling Commerce 44
Ron Monzillo – Sun Microsystems 45
JP Morgenthal – eThink Systems, Inc. 46
Joel Munter - Intel 47
Farrukh Najmi - Sun Microsystems 48
Scott Nieman - Norstan Consulting 49
Frank Olken – Lawrence Berkeley National Laboratory 50
Michael Park - eSum Technologies 51
Bruce Peat - eProcess Solutions 52
Mike Rowley – Excelon Corporation 53
Waqar Sadiq - Vitria 54
Krishna Sankar – Cisco Systems Inc. 55
Kim Tae Soo - Government of Korea 56
Nikola Stojanovic - Encoda Systems, Inc. 57
David Webber – XML Global 58
Yutaka Yoshida - Sun Microsystems 59
Prasad Yendluri - webmethods 60
Peter Z. Zhoo - Knowledge For the new Millennium 61

62

ebXML Registry January 2001

ebXML Registry Services Specification Page 3

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Table of Contents 62

1 Status of this Document .. 1 63

2 ebXML participants ... 2 64

Table of Contents... 3 65

Table of Tables ... 7 66

3 Introduction... 8 67

3.1 Summary of Contents of Document ...8 68
3.2 General Conventions ..8 69
3.3 Audience...8 70
3.4 Related Documents ..8 71

4 Design Objectives.. 9 72

4.1 Goals ...9 73
4.2 Caveats and Assumptions ...9 74

5 System Overview ... 9 75

5.1 What The ebXML Registry Does ..9 76
5.2 How The ebXML Registry Works .. 10 77

5.2.1 Schema Documents Are Submitted .. 10 78
5.2.2 Business Process Documents Are Submitted............................. 10 79
5.2.3 Seller’s Collaboration Protocol Profile Is Submitted 10 80
5.2.4 Buyer Discovers The Seller .. 10 81
5.2.5 CPA Is Established .. 11 82

5.3 Where the Registry Services May Be Implemented............................... 11 83
5.4 Implementation Conformance .. 11 84

5.4.1 Conformance as an ebXML Registy... 11 85
5.4.2 Conformance as an ebXML Registry Client................................. 11 86

6 Registry Architecture..12 87
6.1 Implicit CPA Between Clients And Registry... 13 88
6.2 Client To Registry Communication Bootstrapping 14 89
6.3 Interfaces Exposed By The Registry... 15 90

6.3.1 Interface RegistryService.. 15 91
6.3.2 Interface ObjectManager .. 16 92
6.3.3 Interface ObjectQueryManager ... 16 93

6.4 Interfaces Exposed By Registry Clients .. 18 94
6.4.1 Interface RegistryClient... 18 95
6.4.2 Interface ObjectManagerClient.. 18 96
6.4.3 Interface ObjectQueryManagerClient... 20 97

7 Object Management Service ...20 98

7.1 Life Cycle of a Registry Entry... 21 99

ebXML Registry January 2001

ebXML Registry Services Specification Page 4

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.2 Object Attributes ... 21 100
7.3 The Submit Objects Protocol ... 22 101

7.3.1 Universally Unique ID Generation... 22 102
7.3.2 ID Attribute And Object References .. 23 103
7.3.3 Sample SubmitObjectsRequest ... 23 104

7.4 The Add Slots Protocol ... 26 105
7.5 The Remove Slots Protocol.. 26 106
7.6 The Approve Objects Protocol... 27 107
7.7 The Deprecate Objects Protocol ... 27 108
7.8 The Remove Objects Protocol... 28 109

7.8.1 Deletion Scope DeleteRepositoryItemOnly 28 110
7.8.2 Deletion Scope DeleteAll .. 28 111

8 Object Query Management Service ..29 112
8.1 Browse and Drill Down Query Support ... 30 113

8.1.1 Get Root Classification Nodes Request....................................... 30 114
8.1.2 Get Classification Tree Request .. 31 115
8.1.3 Get Classified Objects Request ... 32 116

8.1.3.1 Get Classified Objects Request Example 32 117
8.2 Filter Query Support .. 33 118

8.2.1 FilterQuery... 34 119
8.2.2 RegistryEntryQuery ... 36 120
8.2.3 AuditableEventQuery... 42 121
8.2.4 ClassificationNodeQuery .. 45 122
8.2.5 RegistryPackageQuery... 48 123
8.2.6 OrganizationQuery... 50 124
8.2.7 GetRegistryEntry.. 54 125
8.2.8 GetRepositoryItem ... 58 126
8.2.9 Registry Filters.. 63 127
8.2.10 XML Clause Constraint Representation....................................... 66 128

8.3 SQL Query Support ... 70 129
8.3.1 SQL Query Syntax Binding To [RIM] .. 70 130

8.3.1.1 Interface and Class Binding ... 70 131
8.3.1.2 Accessor Method To Attribute Binding 71 132
8.3.1.3 Primitive Attributes Binding ... 71 133
8.3.1.4 Reference Attribute Binding ... 71 134
8.3.1.5 Complex Attribute Binding .. 72 135
8.3.1.6 Collection Attribute Binding .. 72 136

8.3.2 Semantic Constraints On Query Syntax....................................... 72 137
8.3.3 SQL Query Results .. 73 138
8.3.4 Simple Metadata Based Queries... 73 139
8.3.5 RegistryEntry Queries ... 73 140
8.3.6 Classification Queries.. 74 141

8.3.6.1 Identifying ClassificationNodes .. 74 142
8.3.6.2 Getting Root Classification Nodes................................... 74 143

ebXML Registry January 2001

ebXML Registry Services Specification Page 5

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.3.6.3 Getting Children of Specified ClassificationNode 74 144
8.3.6.4 Getting Objects Classified By a ClassificationNode 74 145
8.3.6.5 Getting ClassificationNodes That Classify an Object... 75 146

8.3.7 Association Queries... 75 147
8.3.7.1 Getting All Association With Specified Object As Its 148
Source 75 149
8.3.7.2 Getting All Association With Specified Object As Its 150
Target 75 151
8.3.7.3 Getting Associated Objects Based On Association 152
Attributes ... 75 153
8.3.7.4 Complex Association Queries.. 75 154

8.3.8 Package Queries.. 76 155
8.3.8.1 Complex Package Queries... 76 156

8.3.9 ExternalLink Queries ... 76 157
8.3.9.1 Complex ExternalLink Queries .. 76 158

8.3.10 Audit Trail Queries ... 76 159
8.3.11 Content Based Ad Hoc Queries... 76 160

8.3.11.1 Automatic Classification of XML Content..................... 77 161
8.3.11.2 Index Definition... 77 162
8.3.11.3 Example Of Index Definition... 77 163
8.3.11.4 Example of Automatic Classification............................. 78 164

8.3.12 Ad Hoc Query Request/Response .. 78 165
8.4 Content Retrieval ... 79 166

8.4.1 Retrieval of Registry Profile .. 79 167
8.4.2 Identification Of Content Payloads .. 80 168
8.4.3 GetContentResponse Message Structure 80 169

8.5 Query And Retrieval: Typical Sequence .. 81 170

9 Registry Security ...81 171
9.1 Integrity of Registry Content ... 82 172

9.1.1 Message Payload Signature .. 82 173
9.2 Authentication ... 82 174

9.2.1 Message Header Signature.. 83 175
9.3 Confidentiality... 83 176

9.3.1 On-the-wire Message Confidentiality.. 83 177
9.3.2 Confidentiality of Registry Content .. 83 178

9.4 Authorization ... 83 179
9.4.1 Pre-defined Roles For Registry Users .. 83 180
9.4.2 Default Access Control Policies... 84 181

Appendix A Schemas and DTD Definitions ...85 182

A.1 ebXMLError Message DTD .. 85 183
A.2 ebXML Registry DTD... 85 184

Appendix B Interpretation of UML Diagrams...93 185

B.1 UML Class Diagram... 93 186

ebXML Registry January 2001

ebXML Registry Services Specification Page 6

Copyright © ebXML 2000 & 2001. All Rights Reserved.

B.2 UML Sequence Diagram... 93 187

Appendix C SQL Query ...94 188

C.1 SQL Query Syntax Specification ... 94 189
C.2 Non-Normative BNF for Query Syntax Grammar 95 190
C.3 Relational Schema For SQL Queries ... 96 191

Appendix D Security Implementation Guideline...103 192
D.1 Authentication ...103 193
D.2 Authorization ...103 194
D.3 Registry Bootstrap ...103 195
D.4 Content Submission – Client Responsibility ..103 196
D.5 Content Submission – Registry Responsibility......................................104 197
D.6 Content Delete/Deprecate – Client Responsibility................................104 198
D.7 Content Delete/Deprecate – Registry Responsibility...........................104 199

Appendix E Native Language Support (NLS)..104 200

E.1 Definitions..104 201
E.1.1 Coded Character Set (CCS): ...105 202
E.1.2 Character Encoding Scheme (CES): ..105 203
E.1.3 Character Set (charset):..105 204

E.2 NLS And Request / Response Messages..105 205
E.3 NLS And Storing of RegistryEntry...105 206

E.3.1 Character Set of RegistryEntry ..106 207
E.3.2 Language Information of RegistryEntry106 208

E.4 NLS And Storing of Repository Items...106 209
E.4.1 Character Set of Repository Items ..106 210
E.4.2 Language information of repository item....................................106 211

Appendix F Terminology Mapping...107 212

10 References...107 213

11 Disclaimer ..109 214

12 Contact Information ..110 215

Copyright Statement...111 216

 Table of Figures 217

Figure 1: Registry Architecture Supports Flexible Topologies................................13 218

Figure 2: ebXML Registry Interfaces ..15 219

Figure 3: Life Cycle of a Registry Entry..21 220

Figure 4: Submit Objects Sequence Diagram...22 221

Figure 5: Add Slots Sequence Diagram...26 222

ebXML Registry January 2001

ebXML Registry Services Specification Page 7

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Figure 6: Remove Slots Sequence Diagram ...26 223

Figure 7: Approve Objects Sequence Diagram...27 224

Figure 8: Deprecate Objects Sequence Diagram...28 225

Figure 9: Remove Objects Sequence Diagram...29 226

Figure 10: Get Root Classification Nodes Sequence Diagram30 227

Figure 11: Get Root Classification Nodes Asynchronous Sequence Diagram....31 228

Figure 12: Get Classification Tree Sequence Diagram ...31 229

Figure 13: Get Classification Tree Asynchronous Sequence Diagram.................31 230

Figure 14: A Sample Geography Classification ..32 231

Figure 15: Submit Ad Hoc Query Sequence Diagram ...78 232

Figure 16: Submit Ad Hoc Query Asynchronous Sequence Diagram...................79 233

Figure 17: Typical Query and Retrieval Sequence...81 234

Table of Tables 235

Table 1: Terminology Mapping Table ...107 236

 237

238

ebXML Registry January 2001

ebXML Registry Services Specification Page 8

Copyright © ebXML 2000 & 2001. All Rights Reserved.

3 Introduction 238

3.1 Summary of Contents of Document 239

This document defines the interface to the ebXML Registry Services as well as 240
interaction protocols, message definitions and XML schema. 241

A separate document, ebXML Registry Information Model [RIM], provides 242
information on the types of metadata that is stored in the Registry as well as the 243
relationships among the various metadata classes. 244

3.2 General Conventions 245

o UML diagrams are used as a way to concisely describe concepts. They are 246
not intended to convey any specific implementation or methodology 247
requirements. 248

o The term “repository item” is used to refer to actual Registry content (e.g. a 249
DTD, as opposed to metadata about the DTD). 250

o The term "RegistryEntry" is used to refer to an object that provides metadata 251
about a content instance (repository item). 252

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 253
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in 254
this document, are to be interpreted as described in RFC 2119 [Bra97]. 255

3.3 Audience 256

The target audience for this specification is the community of software 257
developers who are: 258

o Implementers of ebXML Registry Services 259

o Implementers of ebXML Registry Clients 260

3.4 Related Documents 261

The following specifications provide some background and related information to 262
the reader: 263

a) ebXML Registry Business Domain Model [BDM] - defines requirements 264
for ebXML Registry Services 265

b) ebXML Registry Information Model [RIM]- specifies the information model 266
for the ebXML Registry 267

c) ebXML Messaging Service Specification [MS] 268

d) ebXML Business Process Specification Schema [BPM] 269

ebXML Registry January 2001

ebXML Registry Services Specification Page 9

Copyright © ebXML 2000 & 2001. All Rights Reserved.

e) Collaboration Protocol Specification [CPA] - defines how profiles can be 270
defined for a party and how two parties’ profiles may be used to define a 271
party agreement 272

 273

4 Design Objectives 274

4.1 Goals 275

The goals of this version of the specification are to: 276

o Communicate functionality of Registry services to software developers 277

o Specify the interface for Registry clients and the Registry 278

o Provide a basis for future support of more complete ebXML Registry 279
requirements 280

o Be compatible with other ebXML specifications 281

4.2 Caveats and Assumptions 282

The Registry Services specification is first in a series of phased deliverables. 283
Later versions of the document will include additional functionality planned for 284
future development. 285

It is assumed that: 286

1. All interactions between the clients of the ebXML Registry and the ebXML 287
Registry will be conducted using ebXML Messaging Service. 288

2. All access to the Registry content is exposed via the interfaces defined for 289
the Registry Services. 290

3. The Registry makes use of a Repository for storing and retrieving 291
persistent information required by the Registry Services. This is an 292
implementation detail that will not be discussed further in this specification. 293

5 System Overview 294

5.1 What The ebXML Registry Does 295

The ebXML Registry provides a set of services that enable sharing of information 296
between interested parties for the purpose of enabling business process 297
integration between such parties based on the ebXML specifications. The shared 298
information is maintained as objects in a repository and managed by the ebXML 299
Registry Services defined in this document. 300

ebXML Registry January 2001

ebXML Registry Services Specification Page 10

Copyright © ebXML 2000 & 2001. All Rights Reserved.

5.2 How The ebXML Registry Works 301

This section describes at a high level some use cases illustrating how Registry 302
clients may make use of Registry Services to conduct B2B exchanges. It is 303
meant to be illustrative and not prescriptive. 304

The following scenario provides a high level textual example of those use cases 305
in terms of interaction between Registry clients and the Registry. It is not a 306
complete listing of the use cases envisioned in [BDM]. It assumes for purposes of 307
example, a buyer and a seller who wish to conduct B2B exchanges using the 308
RosettaNet PIP3A4 Purchase Order business protocol. It is assumed that both 309
buyer and seller use the same Registry service provided by a third party. Note 310
that the architecture supports other possibilities (e.g. each party uses their own 311
private Registry). 312

5.2.1 Schema Documents Are Submitted 313

A third party such as an industry consortium or standards group can submit the 314
necessary schema documents required by the RosettaNet PIP3A4 Purchase 315
Order business protocol with the Registry using the Object Manager service of 316
the Registry described in section 7.3. 317

5.2.2 Business Process Documents Are Submitted 318

A third party, such as an industry consortium or standards group, can submit the 319
necessary business process documents required by the RosettaNet PIP3A4 320
Purchase Order business protocol with the Registry using the Object Manager 321
service of the Registry described in section 7.3. 322

5.2.3 Seller’s Collaboration Protocol Profile Is Submitted 323

The seller publishes its Collaboration Protocol Profile or CPP as defined by 324
[CPA] to the Registry. The CPP describes the seller, the role it plays, the 325
services it offers and the technical details on how those services may be 326
accessed. The seller classifies their Collaboration Protocol Profile using the 327
Registry’s flexible classification capabilities. 328

5.2.4 Buyer Discovers The Seller 329

The buyer browses the Registry using classification schemes defined within the 330
Registry using a Registry Browser GUI tool to discover a suitable seller. For 331
example the buyer may look for all parties that are in the Automotive Industry, 332
play a seller role, support the RosettaNet PIP3A4 process and sell Car Stereos. 333

The buyer discovers the seller’s CPP and decides to engage in a partnership 334
with the seller. 335

ebXML Registry January 2001

ebXML Registry Services Specification Page 11

Copyright © ebXML 2000 & 2001. All Rights Reserved.

5.2.5 CPA Is Established 336

The buyer unilaterally creates a Collaboration Protocol Agreement or CPA as 337
defined by [CPA] with the seller using the seller’s CPP and their own CPP as 338
input. The buyer proposes a partnership to the seller using the unilateral CPA. 339
The seller accepts the proposed CPA and the partnership is established. 340

Once the seller accepts the CPA, the parties may begin to conduct B2B 341
transactions as defined by [MS]. 342

5.3 Where the Registry Services May Be Implemented 343

The Registry Services may be implemented in several ways including, as a 344
public web site, as a private web site, hosted by an ASP or hosted by a VPN 345
provider. 346

5.4 Implementation Conformance 347

An implementation may claim conformance as an ebXML Registry, an ebXML 348
Registry Client or both. 349

5.4.1 Conformance as an ebXML Registy 350

An implementation claims conformance to this specification if it meets the 351
following conditions: 352

1. Conforms to the ebXML Registry Information Model [RIM]. 353

2. Supports the syntax and semantics of the Registry Interfaces and Security 354
Model. 355

3. Supports the defined ebXML Error Message DTD. 356

4. Supports the defined ebXML Registry DTD. 357

5. Optionally supports the syntax and semantics of Section 8.3, SQL Query 358
Support. 359

5.4.2 Conformance as an ebXML Registry Client 360

An implementation claims conformance to this specification, as an ebXML 361
Registry Client if it meets the following conditions: 362

1. Supports the ebXML CPA and bootstrapping process. 363

2. Supports the syntax and the semantics of the Registry Client Interfaces. 364

3. Supports the defined ebXML Error Message DTD. 365

4. Supports the defined ebXML Registry DTD. 366

ebXML Registry January 2001

ebXML Registry Services Specification Page 12

Copyright © ebXML 2000 & 2001. All Rights Reserved.

6 Registry Architecture 367

The ebXML Registry architecture consists of an ebXML Registry and ebXML 368
Registry Clients. The Registry Client interfaces may be local to the registry or 369
local to the user. Figure 1 depicts the two possible topologies supported by the 370
registry architecture with respect to the Registry and Registry Clients. 371

The picture on the left side shows the scenario where the Registry provides a 372
web based thin client application for accessing the Registry that is available to 373
the user using a common web browser. In this scenario the Registry Client 374
interfaces reside across the internet and local to the Registry from the user’s 375
perspective. 376

The picture on the right side shows the scenario where the user is using a fat 377
client Registry Browser application to access the registry. In this scenario the 378
Registry Client interfaces reside within the Registry Browser tool and are local to 379
the Registry from the user’s perspective. The Registry Client interfaces 380
communicate with the Registry over the internet in this scenario. 381

A third topology made possible by the registry architecture is where the Registry 382
Client interfaces reside in a server side business component such as an 383
Purchasing business component. In this topology there may be no direct user 384
interface or user intervention involved. Instead the Purchasing business 385
component may access the Registry in an automated manner to select possible 386
sellers or service providers based current business needs. 387

ebXML Registry January 2001

ebXML Registry Services Specification Page 13

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 388

Figure 1: Registry Architecture Supports Flexible Topologies 389

Clients communicate with the Registry using the ebXML Messaging Service in 390
the same manner as any two ebXML applications communicating with each 391
other. Future versions of this specification may extend the Registry architecture 392
to support distributed Registries. 393

This specification defines the interaction between a Registry client and the 394
Registry. Although these interaction protocols are specific to the Registry, they 395
are identical in nature to the interactions between two parties conducting B2B 396
message communication using the ebXML Messaging Service as defined by 397
[MS] and [CPA]. 398

As such, these Registry specific interaction protocols are a special case of 399
interactions between two parties using the ebXML Messaging Service. 400

6.1 Implicit CPA Between Clients And Registry 401

ebXML defines that a Collaboration Protocol Agreement [CPA] must exist 402
between two parties in order for them to engage in B2B interactions. 403

ebXML Registry January 2001

ebXML Registry Services Specification Page 14

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Similarly, this specification defines a CPA between a Registry client and the 404
Registry. Typical B2B interactions in ebXML require an explicit CPA to be 405
negotiated between parties. However, the CPA between clients and the Registry 406
is an implicit CPA that describes the interfaces that the Registry and the client 407
expose to each other for Registry specific interactions. These interfaces are 408
described in Figure 2 and subsequent sections. 409

6.2 Client To Registry Communication Bootstrapping 410

Because there is no previously established CPA between the Registry and the 411
RegistryClient, the client must know at least one Transport specific 412
communication address for the Registry. This communication address is typically 413
a URL to Registry, although it could be some other type of address such as email 414
address. 415

For example, if the communication used by the Registry is HTTP then the 416
communication address is a URL. In this example, the client uses the Registry’s 417
public URL to create an implicit CPA with the Registry. When the client sends a 418
request to the Registry, it provides a URL to itself. The Registry uses the client’s 419
URL to form its version of an implicit CPA with the client. At this point a session is 420
established within the Registry. 421

For the duration of the client’s session with the Registry, messages may be 422
exchanged bidirectionally as required by the interaction protocols defined in this 423
specification. 424

ebXML Registry January 2001

ebXML Registry Services Specification Page 15

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 425

Figure 2: ebXML Registry Interfaces 426

6.3 Interfaces Exposed By The Registry 427

The ebXML Registry is shown to implement the following interfaces as its 428
services (Registry Services). 429

6.3.1 Interface RegistryService 430

 431

This is the principal interface implemented by the Registry. It provides the 432
methods that are used by the client to discover service specific interfaces 433
implemented by the Registry. 434

 435

ebXML Registry January 2001

ebXML Registry Services Specification Page 16

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Method Summary

 ObjectManager getObjectManager()
Returns the ObjectManager interface implemented by
the Registry service.

 ObjectQueryManager getObjectQueryManager()
Returns the ObjectQueryManager interface
implemented by the Registry service.

 436

6.3.2 Interface ObjectManager 437

 438

This is the interface exposed by the Registry Service that implements the Object 439
life cycle management functionality of the Registry. Its methods are invoked by 440
the Registry Client. For example, the client may use this interface to submit 441
objects, classify and associate objects and to deprecate and remove objects. 442

 443

Method Summary

 Void approveObjects(ApproveObjectsRequest req)
Approves one or more previously submitted objects.

 Void deprecateObjects(DeprecateObjectsRequest req)
Deprecates one or more previously submitted objects.

 Void removeObjects(RemoveObjectsRequest req)
Removes one or more previously submitted objects from the Registry.

 void submitObjects(SubmitObjectsRequest req)
Submits one or more objects and possibly metadata related to object such
as Associations and Classifications.

 void addSlots(AddSlotsRequest req)
Add slots to one or more registry entries.

 void removeSlots(RemoveSlotsRequest req)
Remove specified slots from one or more registry entries.

6.3.3 Interface ObjectQueryManager 444

 445

ebXML Registry January 2001

ebXML Registry Services Specification Page 17

Copyright © ebXML 2000 & 2001. All Rights Reserved.

This is the interface exposed by the Registry that implements the Object Query 446
management service of the Registry. Its methods are invoked by the Registry 447
Client. For example, the client may use this interface to perform browse and drill 448
down queries or ad hoc queries on Registry content and metadata. 449

 450

Method Summary

 GetClassificationTreeResponse getClassificationTree(
GetClassificationTreeRequest req)
Returns the ClassificationNode Tree under the
ClassificationNode specified in
GetClassificationTreeRequest.

 void getClassificationTreeAsync(
GetClassificationTreeRequest req)
Asynchronous version of getClassificationTree.

 GetClassifiedObjectsResponse getClassifiedObjects(
GetClassifiedObjectsRequest req)
Returns a collection of references to
RegistryEntries classified under specified
ClassificationItem.

 void getClassifiedObjectsAsync(
GetClassifiedObjectsRequest req)
Asynchronous version of getClassifiedObjects.

 GetContentResponse getContent()
Returns the specified content. The response
includes all the content specified in the request as
additional payloads within the response message.

 void getContentAsync()
Async version of getContent.

 GetRootClassificationNodesResponse getRootClassificationNodes(
GetRootClassificationNodesRequest req)
Returns all root ClassificationNodes that match
the namePattern attribute in
GetRootClassificationNodesRequest request.

 void getRootClassificationNodesAsync(
GetRootClassificationNodesRequest req)
Async version of getRootClassificationNodes.

ebXML Registry January 2001

ebXML Registry Services Specification Page 18

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 AdhocQueryResponse submitAdhocQuery(AdhocQueryRequest req)
Submit an ad hoc query request.

 void submitAdhocQueryAsync(AdhocQueryRequest req)
Async version of submitAdhocQuery.

6.4 Interfaces Exposed By Registry Clients 451

An ebXML Registry client is shown to implement the following interfaces. 452

6.4.1 Interface RegistryClient 453

 454

This is the principal interface implemented by a Registry client. The client 455
provides this interface when creating a connection to the Registry. It provides the 456
methods that are used by the Registry to discover service specific interfaces 457
implemented by the client. 458

 459

Method Summary

 ObjectManagerClient getObjectManagerClient()
Returns the ObjectManagerClient interface
implemented by the client.

 ObjectQueryManagerClient getObjectQueryManagerClient()
Returns the ObjectQueryManagerClient interface
implemented by the client.

 460

6.4.2 Interface ObjectManagerClient 461

 462

This is the client callback interface for the ObjectManager service of the Registry. 463
The ObjectManager invokes its methods to notify the client about the results of a 464
previously submitted request from the client to the ObjectManager service. 465

 466

Method Summary

 void addSlotsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted AddSlotsRequest was accepted
by the Registry.

ebXML Registry January 2001

ebXML Registry Services Specification Page 19

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 void addSlotsError(ebXMLError error)
Notifies client that a previously submitted AddSlotsRequest was not
accepted by the Registry due to an error.

 void approveObjectsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted ApproveObjectsRequest was
accepted by the Registry.

 void approveObjectsError(ebXMLError error)
Notifies client that a previously submitted ApproveObjectsRequest was not
accepted by the Registry due to an error.

 void deprecateObjectsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted DeprecateObjectsRequest was
accepted by the Registry.

 void deprecateObjectsError(ebXMLError error)
Notifies client that a previously submitted DeprecateObjectsRequest was
not accepted by the Registry due to an error.

 void removeObjectsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted RemoveObjectsRequest was
accepted by the Registry.

 void removeSlotsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted RemoveSlotsRequest was
accepted by the Registry.

 void removeObjectsError(ebXMLError error)
Notifies client that a previously submitted RemoveObjectsRequest was not
accepted by the Registry due to an error.

 void removeSlotsError(ebXMLError error)
Notifies client that a previously submitted RemoveSlotsRequest was not
accepted by the Registry due to an error.

 void submitObjectsAccepted(RequestAcceptedResponse resp)
Notifies client that a previously submitted SubmitObjectsRequest was
accepted by the Registry.

 void submitObjectsError(ebXMLError error)
Notifies client that a previously submitted SubmitObjectsRequest was not
accepted by the Registry due to an error.

 467

ebXML Registry January 2001

ebXML Registry Services Specification Page 20

Copyright © ebXML 2000 & 2001. All Rights Reserved.

6.4.3 Interface ObjectQueryManagerClient 468

 469

This is the callback interface for the ObjectQueryManager service of the Registry. 470
The ObjectQueryManager invokes its methods to notify the client about the 471
results of a previously submitted query request from client to the 472
ObjectQueryManager service. 473

 474

Method Summary

 void getClassificationTreeAsyncResponse(
GetClassificationTreeResponse resp)
Async response for getClassificationTreeAsync request.

 void getClassifiedObjectsAsyncResponse(
GetClassifiedObjectsResponse resp)
Async response for getClassifiedObjectsAsync request.

 void getContentAsyncResponse(GetContentResponse resp)
Async response for getContent request.

 void getRootClassificationNodesAsyncResponse(
GetRootClassificationNodesResponse resp)
Async response for getRootClassificationNodesAsync request.

 void submitAdhocQueryAsyncResponse(AdhocQueryResponse resp)
Async response for submitAdhocQueryAsync request.

7 Object Management Service 475

This section defines the Object Management service of the Registry. The Object 476
Management Service is a sub-service of the Registry service. It provides the 477
functionality required by RegistryClients to manage the life cycle of repository 478
items (e.g. XML documents required for ebXML business processes). The 479
Object Management Service can be used with all types of repository items as 480
well as the metadata objects specified in [RIM] such as Classification and 481
Association. 482

In the current version of this specification, any client may submit content as long 483
as the content is digitally signed by a certificate issued by a Certificate Authority 484
recognized by this registry. Submitting Organizations do not have to register prior 485
to submitting content. 486

ebXML Registry January 2001

ebXML Registry Services Specification Page 21

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.1 Life Cycle of a Registry Entry 487

The main purpose of the Object Management service is to manage the life cycle 488
of repository items in the Registry. 489

Figure 3 shows the typical life cycle of a repository item. Note that the current 490
version of this specification does not support Object versioning. Object versioning 491
will be added in a future version of this specification. 492

 493

Figure 3: Life Cycle of a Registry Entry 494

7.2 Object Attributes 495

A repository item is associated with a set of standard metadata defined as 496
attributes of the Object class and its sub-classes as described in [RIM]. These 497
attributes reside outside of the actual repository item and catalog descriptive 498
information about the repository item. XML DTD elements called ExtrinsicObject 499
and IntrinsicObject (See Appendix A.2 for details.) are defined that encapsulates 500
all object metadata attributes defined in [RIM] as attributes of the DTD elements. 501

ebXML Registry January 2001

ebXML Registry Services Specification Page 22

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.3 The Submit Objects Protocol 502

This section describes the protocol of the Registry Service that allows a 503
RegistryClient to submit one or more repository items in the repository using the 504
ObjectManager on behalf of a Submitting Organization. It is expressed in UML 505
notation as described in Appendix B. 506

 507

Figure 4: Submit Objects Sequence Diagram 508

For details on the schema for the business documents shown in this process 509
refer to Appendix A.2. 510

The SubmitObjectRequest message includes 1 or more SubmittedObject 511
elements. 512

Each SubmittedObject element specifies an ExtrinsicObject along with any 513
Classifications, Associations, ExternalLinks, or Packages related to the object 514
being submitted. 515

An ExtrinsicObject element provides required metadata about the content being 516
submitted to the Registry as defined by [RIM]. Note that these standard 517
ExtrinsicObject attributes are separate from the repository item itself, thus 518
allowing the ebXML Registry to catalog arbitrary objects. In addition each 519
SubmittedObject in the request may optionally specify any number of 520
Classifications, Associations and ExternalLinks for the SubmittedObject. 521

7.3.1 Universally Unique ID Generation 522

As specified by [RIM], all objects in the registry have a unique id. This id is 523
usually generated by the registry. The id attribute for various submitted objects 524
may optionally be supplied by the client. If the client supplies the id and it 525

conforms to the format of a URN that specifies a DCE 128 bit UUID 526

ebXML Registry January 2001

ebXML Registry Services Specification Page 23

Copyright © ebXML 2000 & 2001. All Rights Reserved.

(e.g. urn:uuid:a2345678-1234-1234-123456789012) 527

then the registry assumes that the client wishes to specify the id for the object. 528

In this case, the registry must honor a client-supplied id and use it as the id 529
attribute of the object in the registry. If the id is found by the registry to not be 530

globally unique, the registry must send an ebXMLError in response with an 531
InvalidIdError message. 532

If the client does not supply an id for a submitted object then the registry 533

must generate a universally unique id. Whether the id is generated by the 534

client or whether it is generated by the registry, it must be generated using the 535
DCE 128 bit UUID generation algorithm as specified in [TA]. 536

7.3.2 ID Attribute And Object References 537

The id attribute of an object may be used by other objects to reference the first 538
object. Such references are common both within the SubmitObjectsRequest as 539
well as within the registry. Within a SubmitObjectsRequest, the id attribute may 540
be used to refer to an object within the SubmitObjectsRequest as well as to refer 541
to an object within the registry. An object in the SubmitObjectsRequest that 542
needs to be referred to within the request document may be assigned an id by 543
the submitter so that it can be referenced within the request. The submitter may 544
give the object a proper uuid URN in which case the id is permanently assigned 545
to the object within the registry. 546

Alternatively, the submitter may assign an arbitrary id (not a proper uuid URN) as 547
long as the id is unique within the request document. In this case the id serves as 548
a linkage mechanism within the request document but must be ignored by the 549
registry and replaced with a registry generated id upon submission. 550

When an object in a SubmitObjectsRequest needs to reference an object that is 551
already in the registry, the request must contain an ObjectRef element whose id 552
attribute is the id of the object in the registry. This id is by definition a proper uuid 553
URN. An ObjectRef may be viewed as a proxy within the request for an Object 554
that is in the registry. 555

7.3.3 Sample SubmitObjectsRequest 556

The following example shows several different use cases in a single 557
SubmitObjectRequest. It does not show the complete ebXML Message with the 558
message header and additional payloads in the message for the repository items. 559

A SubmitObjectsRequest includes a RegistryEntryList which contains any 560
number of objects that are being submitted. It may also contain any number of 561
ObjectRefs to link objects being submitted to objects already within the registry. 562

 563
<?xml version = "1.0" encoding = "UTF-8"?> 564

ebXML Registry January 2001

ebXML Registry Services Specification Page 24

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!DOCTYPE SubmitObjectsRequest SYSTEM "file:////home/najmi/Registry.dtd"> 565
 566
<SubmitObjectsRequest> 567
 <RegistryEntryList> 568
 569
 <!— 570
 The following 3 objects package specified ExtrinsicObject in specified 571
 Package, where both the Package and the ExtrinsicObject are 572
 being submitted 573
 --> 574
 <Package id = "acmePackage1" name = "Package #1" description = "ACME's package #1"/> 575
 <ExtrinsicObject id = "acmeCPP1" contentURI = "CPP1" 576
 objectType = "CPP" name = "Widget Profile" 577
 description = "ACME's profile for selling widgets"/> 578
 <Association id = "acmePackage1-acmeCPP1-Assoc" associationType = "Packages" 579
 sourceObject = "acmePackage1" targetObject = "acmeCPP1"/> 580
 581
 <!— 582
 The following 3 objects package specified ExtrinsicObject in specified Package, 583
 Where the Package is being submitted and the ExtrinsicObject is 584
 already in registry 585
 --> 586
 <Package id = "acmePackage2" name = "Package #2" description = "ACME's package #2"/> 587
 <ObjectRef id = "urn:uuid:a2345678-1234-1234-123456789012"/> 588
 <Association id = "acmePackage2-alreadySubmittedCPP-Assoc" 589
 associationType = "Packages" sourceObject = "acmePackage2" 590
 targetObject = "urn:uuid:a2345678-1234-1234-123456789012"/> 591
 592
 <!— 593
 The following 3 objects package specified ExtrinsicObject in specified Package, 594
 where the Package and the ExtrinsicObject are already in registry 595
 --> 596
 <ObjectRef id = "urn:uuid:b2345678-1234-1234-123456789012"/> 597
 <ObjectRef id = "urn:uuid:c2345678-1234-1234-123456789012"/> 598
 <!-- id is unspecified implying that registry must create a uuid for this object --> 599
 <Association associationType = "Packages" 600
 sourceObject = "urn:uuid:b2345678-1234-1234-123456789012" 601
 targetObject = "urn:uuid:c2345678-1234-1234-123456789012"/> 602
 603
 <!— 604
 The following 3 objects externally link specified ExtrinsicObject using 605
 specified ExternalLink, where both the ExternalLink and the ExtrinsicObject 606
 are being submitted 607
 --> 608
 <ExternalLink id = "acmeLink1" name = "Link #1" description = "ACME's Link #1"/> 609
 <ExtrinsicObject id = "acmeCPP2" contentURI = "CPP2" objectType = "CPP" 610
 name = "Sprockets Profile" description = "ACME's profile for selling sprockets"/> 611
 <Association id = "acmeLink1-acmeCPP2-Assoc" associationType = "ExternallyLinks" 612
 sourceObject = "acmeLink1" targetObject = "acmeCPP2"/> 613
 614
 <!-- 615
 The following 2 objects externally link specified ExtrinsicObject using specified 616
 ExternalLink, where the ExternalLink is being submitted and the ExtrinsicObject 617
 is already in registry. Note that the targetObject points to an ObjectRef in a 618
 previous line 619
 --> 620
 <ExternalLink id = "acmeLink2" name = "Link #2" description = "ACME's Link #2"/> 621
 <Association id = "acmeLink2-alreadySubmittedCPP-Assoc" 622
 associationType = "ExternallyLinks" sourceObject = "acmeLink2" 623
 targetObject = "urn:uuid:a2345678-1234-1234-123456789012"/> 624
 625
 <!-- 626
 The following 2 objects externally identify specified ExtrinsicObject using specified 627
 ExternalIdentifier, where the ExternalIdentifier is being submitted and the 628
 ExtrinsicObject is already in registry. Note that the targetObject points to an 629
 ObjectRef in a previous line 630
 --> 631
 <ExternalIdentifier id = "acmeDUNSId" name = "DUNS" description = "DUNS ID for ACME" 632

ebXML Registry January 2001

ebXML Registry Services Specification Page 25

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 value = "13456789012"/> 633
 <Association id = "acmeDUNSId-alreadySubmittedCPP-Assoc" 634
 associationType = "ExternallyIdentifies" sourceObject = "acmeDUNSId" 635
 targetObject = "urn:uuid:a2345678-1234-1234-123456789012"/> 636
 637
 <!-- 638
 The following show submission of a brand new classification scheme in its entirety 639
 --> 640
 <ClassificationNode id = "geographyNode" name = "Geography" 641
 description = "The Geography scheme example from Registry Services Spec" /> 642
 <ClassificationNode id = "asiaNode" name = "Asia" 643
 description = "The Asia node under the Geography node" parent="geographyNode" /> 644
 <ClassificationNode id = "japanNode" name = "Japan" 645
 description ="The Japan node under the Asia node" parent="asiaNode" /> 646
 <ClassificationNode id = "koreaNode" name = "Korea" 647
 description ="The Korea node under the Asia node" parent="koreaNode" /> 648
 <ClassificationNode id = "europeNode" name = "Europe" 649
 description = "The Europe node under the Geography node" parent="geographyNode" /> 650
 <ClassificationNode id = "germanyNode" name = "Germany" 651
 description ="The Germany node under the Asia node" parent="europeNode" /> 652
 <ClassificationNode id = "northAmericaNode" name = "North America" 653
 description = "The North America node under the Geography node" 654
 parent="geographyNode" /> 655
 <ClassificationNode id = "usNode" name = "US" 656
 description ="The US node under the Asia node" parent="asiaNode" /> 657
 658
 <!-- 659
 The following show submission of a Automotive sub-tree of ClassificationNodes that 660
 gets added to an existing classification scheme named 'Industry' 661
 that is already in the registry 662
 --> 663
 <ObjectRef id="urn:uuid:d2345678-1234-1234-123456789012" /> 664
 <ClassificationNode id = "automotiveNode" name = "Automotive" 665
 description = "The Automotive sub-tree under Industry scheme" 666
 parent = "urn:uuid:d2345678-1234-1234-123456789012"/> 667
 <ClassificationNode id = "partSuppliersNode" name = "Parts Supplier" 668
 description = "The Parts Supplier node under the Automotive node" 669
 parent="automotiveNode" /> 670
 <ClassificationNode id = "engineSuppliersNode" name = "Engine Supplier" 671
 description = "The Engine Supplier node under the Automotive node" 672
 parent="automotiveNode" /> 673
 674
 <!-- 675
 The following show submission of 2 Classifications of an object that is already in 676
 the registry using 2 ClassificationNodes. One ClassificationNode 677
 is being submitted in this request (Japan) while the other is already in the registry. 678
 --> 679
 <Classification id = "japanClassification" 680
 description = "Classifies object by /Geography/Asia/Japan node" 681
 classifiedObject="urn:uuid:a2345678-1234-1234-123456789012" 682
 classificationNode="japanNode" /> 683
 <Classification id = "classificationUsingExistingNode" 684
 description = "Classifies object using a node in the registry" 685
 classifiedObject="urn:uuid:a2345678-1234-1234-123456789012" 686
 classificationNode="urn:uuid:e2345678-1234-1234-123456789012" /> 687
 <ObjectRef id="urn:uuid:e2345678-1234-1234-123456789012" /> 688
 689
 690
 </RegistryEntryList> 691
</SubmitObjectsRequest> 692

ebXML Registry January 2001

ebXML Registry Services Specification Page 26

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.4 The Add Slots Protocol 693

This section describes the protocol of the Registry Service that allows a client to 694
add slots to a previously submitted registry entry using the Object Manager. Slots 695
provide a dynamic mechanism for extending registry entries as defined by [RIM]. 696

 697

Figure 5: Add Slots Sequence Diagram 698

 699

7.5 The Remove Slots Protocol 700

This section describes the protocol of the Registry Service that allows a client to 701
add slots to a previously submitted registry entry using the Object Manager. 702

 703

Figure 6: Remove Slots Sequence Diagram 704

ebXML Registry January 2001

ebXML Registry Services Specification Page 27

Copyright © ebXML 2000 & 2001. All Rights Reserved.

7.6 The Approve Objects Protocol 705

This section describes the protocol of the Registry Service that allows a client to 706
approve one or more previously submitted repository items using the Object 707
Manager. Once a repository item is approved it will become available for use by 708
business parties (e.g. during the assembly of new CPAs and Collaboration 709
Protocol Profiles). 710

 711

Figure 7: Approve Objects Sequence Diagram 712

For details on the schema for the business documents shown in this process 713
refer to Appendix A.2. 714

7.7 The Deprecate Objects Protocol 715

This section describes the protocol of the Registry Service that allows a client to 716
deprecate one or more previously submitted repository items using the Object 717
Manager. Once an object is deprecated, no new references (e.g. new 718
Associations, Classifications and ExternalLinks) to that object can be submitted. 719
However, existing references to a deprecated object continue to function 720
normally. 721

ebXML Registry January 2001

ebXML Registry Services Specification Page 28

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 722

Figure 8: Deprecate Objects Sequence Diagram 723

For details on the schema for the business documents shown in this process 724
refer to Appendix A.2. 725

7.8 The Remove Objects Protocol 726

This section describes the protocol of the Registry Service that allows a client to 727
remove one or more Registry Entries and/or repository items using the Object 728
Manager. 729

The RemoveObjectsRequest message is sent by a client to remove Registry 730
Entries and/or repository items. The RemoveObjectsRequest element includes 731
an XML attribute called deletionScope which is an enumeration that can have the 732
values as defined by the following sections. 733

7.8.1 Deletion Scope DeleteRepositoryItemOnly 734

This deletionScope specifies that the request should delete the repository items 735
for the specified registry entries but not delete the specified registry entries. This 736
is useful in keeping references to the registry entries valid. 737

7.8.2 Deletion Scope DeleteAll 738

This deletionScope specifies that the request should delete both the 739
RegistryEntry and the repository item for the specified registry entries. Only if all 740
references (e.g. Associations, Classifications, ExternalLinks) to a RegistryEntry 741
have been removed, can that RegistryEntry then be removed using a 742
RemoveObjectsRequest with deletionScope DeleteAll. Attempts to remove a 743
RegistryEntry while it still has references results in an InvalidRequestError that is 744
returned within an ebXMLError message sent to the ObjectManagerClient by the 745
ObjectManager. 746

ebXML Registry January 2001

ebXML Registry Services Specification Page 29

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The remove object protocol is expressed in UML notation as described in 747
Appendix B. 748

 749

Figure 9: Remove Objects Sequence Diagram 750

For details on the schema for the business documents shown in this process 751
refer to Appendix A.2. 752

8 Object Query Management Service 753

This section describes the capabilities of the Registry Service that allow a client 754
(ObjectQueryManagerClient) to search for or query RegistryEntries in the ebXML 755
Registry using the ObjectQueryManager interface of the Registry. 756

The Registry supports multiple query capabilities. These include the following: 757

1. Browse and Drill Down Query 758

2. Filtered Query 759

3. SQL Query 760

The browse and drill down query [8.1] and the filtered query mechanism [8.2] 761
shall be supported by every Registry implementation. The SQL query mechanism 762
is an optional feature and may be provided by a registry implementation. 763
However, if a vendor provides an SQL query capability to an ebXML Registry 764
they must conform to this document. As such it is this capability is a normative 765
yet optional capability. 766

In a future version of this specification, the W3C XQuery syntax may be 767
considered as another query syntax. 768

ebXML Registry January 2001

ebXML Registry Services Specification Page 30

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Any errors in the query request messages are indicated in the corresponding 769
query response message. Note that for each query request/response there is 770
both a synchronous and asynchronous version of the interaction. 771

8.1 Browse and Drill Down Query Support 772

The browse and drill drown query style is completely supported by a set of 773
interaction protocols between the ObjectQueryManagerClient and the 774
ObjectQueryManager as described next. 775

8.1.1 Get Root Classification Nodes Request 776

An ObjectQueryManagerClient sends this request to get a list of root 777
ClassificationNodes defined in the repository. Root classification nodes are 778
defined as nodes that have no parent. Note that it is possible to specify a 779
namePattern attribute that can filter on the name attribute of the root 780
ClassificationNodes. The namePattern must be specified using a wildcard pattern 781
defined by SQL-92 LIKE clause as defined by [SQL]. 782

 783

Figure 10: Get Root Classification Nodes Sequence Diagram 784

 785

ebXML Registry January 2001

ebXML Registry Services Specification Page 31

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Figure 11: Get Root Classification Nodes Asynchronous Sequence Diagram 786

For details on the schema for the business documents shown in this process 787
refer to Appendix A.2. 788

8.1.2 Get Classification Tree Request 789

An ObjectQueryManagerClient sends this request to get the ClassificationNode 790
sub-tree defined in the repository under the ClassificationNodes specified in the 791
request. Note that a GetClassificationTreeRequest can specify an integer 792
attribute called depth to get the sub-tree up to the specified depth. If depth is the 793
default value of 1, then only the immediate children of the specified 794
ClassificationNodeList are returned. If depth is 0 or a negative number then the 795
entire sub-tree is retrieved. 796

 797

Figure 12: Get Classification Tree Sequence Diagram 798

 799

Figure 13: Get Classification Tree Asynchronous Sequence Diagram 800

For details on the schema for the business documents shown in this process 801
refer to Appendix A.2. 802

ebXML Registry January 2001

ebXML Registry Services Specification Page 32

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.1.3 Get Classified Objects Request 803

An ObjectQueryManagerClient sends this request to get a list of RegistryEntries 804
that are classified by all of the specified ClassificationNodes (or any of their 805
descendants), as specified by the ObjectRefList in the request. 806

It is possible to get RegistryEntries based on matches with multiple 807
classifications. Note that specifying a ClassificationNode is implicitly specifying a 808
logical OR with all descendants of the specified ClassificationNode. 809

When a GetClassifiedObjectsRequest is sent to the ObjectQueryManager it 810
should return Objects that are: 811

1. Either directly classified by the specified ClassificationNode 812

2. Or are directly classified by a descendant of the specified 813
ClassificationNode 814

8.1.3.1 Get Classified Objects Request Example 815

 816

Figure 14: A Sample Geography Classification 817

Let us say a classification tree has the structure shown in Figure 14: 818

?? If the Geography node is specified in the GetClassifiedObjectsRequest then 819
the GetClassifiedObjectsResponse should include all RegistryEntries that are 820
directly classified by Geography or North America or US or Asia or Japan or 821
Korea or Europe or Germany. 822

?? If the Asia node is specified in the GetClassifiedObjectsRequest then the 823
GetClassifiedObjectsResponse should include all RegistryEntries that are 824
directly classified by Asia or Japan or Korea. 825

?? If the Japan and Korea nodes are specified in the 826
GetClassifiedObjectsRequest then the GetClassifiedObjectsResponse should 827
include all RegistryEntries that are directly classified by both Japan and 828
Korea. 829

?? If the North America and Asia node is specified in the 830
GetClassifiedObjectsRequest then the GetClassifiedObjectsResponse should 831
include all RegistryEntries that are directly classified by (North America or 832
US) and (Asia or Japan or Korea). 833

 834

ebXML Registry January 2001

ebXML Registry Services Specification Page 33

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2 Filter Query Support 835

The simple XML FilterQuery specified below shall be supported by every 836
Registry implementation. 837

The FilterQuery syntax is tied to the structures defined in the Registry Information 838
Model [RIM] and is not intended to be extensible. If new structures are added to 839
the RIM, then the FilterQuery syntax and semantics can be extended at the same 840
time. Each query alternative requires a binding to the structures defined by RIM. 841

The Registry will hold a self-describing profile that identifies all supported Query 842
options. The RegistryProfile DTD is defined in appendix A.2. This profile can be 843
retrieved as defined by section 8.4.1. 844

An XML FilterQuery element provides alternatives to query selected classes from 845
the RIM. Each choice of a class pre-determines a virtual XML document that can 846
be queried as a tree. The RIM Binding paragraphs in Sections 8.2.2 through 847
8.2.6 below identify the virtual hierarchy for each query alternative. The Semantic 848
Rules for each query alternative specify the effect of that binding on query 849
semantics. 850

Each FilterQuery alternative depends upon one or more registry filters, where a 851
registry filter is a restricted predicate clause over the attributes of a single class. 852
The supported registry filters are specified in Section 8.2.9 and the supported 853
predicate clauses are defined in Section 8.2.10. 854

The GetRegistryEntry and GetRepositoryItem services defined below provide a 855
way to structure an XML document as an expansion of the result of a 856
RegistryEntryQuery. The GetRegistryEntry specified in Section 8.2.7 allows one 857
to specify what metadata one wants returned with each registry entry identified in 858
the result of a RegistryEntryQuery. The GetRepositoryItem specified in section 859
8.2.8 below allows one to specify what repository items one wants returned 860
based on their relationships to the registry entries identified in the result of a 861
RegistryEntryQuery. 862

A client submits a query to the ObjectQueryManager by sending an Adhoc 863
QueryRequest. The ObjectQueryManager sends an AdhocQueryResponse back 864
to the client. The request and the response for each query alternative, and the 865
sequence diagrams for AdhocQueryRequest and AdhocQueryResponse, are all 866
specified in section 8.3.12 below. A FilterQuery is one of the query options in an 867
AdhocQueryRequest and a FilterQueryResult is the response that is to be 868
returned as part of the AdhocQueryResponse. 869

870

ebXML Registry January 2001

ebXML Registry Services Specification Page 34

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.1 FilterQuery 870

Purpose 871

To identify a set of registry instances from a specific registry class. Each 872
alternative assumes a specific binding to RIM. The query result for each query 873
alternative is a set of references to instances of the root class specified by the 874
binding. The StatusResult is a success indication or a collection of warnings 875
and/or exceptions. 876

Definition 877
 878
<!ELEMENT FilterQuery 879
 (RegistryEntryQuery 880
 | AuditableEventQuery 881
 | ClassificationNodeQuery 882
 | RegistryPackageQuery 883
 | OrganizationQuery)> 884
 885
<!ELEMENT FilterQueryResult 886
 (RegistryEntryQueryResult 887
 | AuditableEventQueryResult 888
 | ClassificationNodeQueryResult 889
 | RegistryPackageQueryResult 890
 | OrganizationQueryResult)> 891
 892
<!ELEMENT RegistryEntryQueryResult (RegistryEntryView*)> 893
 894
<!ELEMENT RegistryEntryView EMPTY > 895
<!ATTLIST RegistryEntryView 896
 objectURN CDATA #REQUIRED 897
 contentURL CDATA #IMPLIED 898
 objectID CDATA #IMPLIED > 899
 900
<!ELEMENT AuditableEventQueryResult (AuditableEventView*)> 901
 902
<!ELEMENT AuditableEventView EMPTY > 903
<!ATTLIST AuditableEventView 904
 objectID CDATA #REQUIRED 905
 timestamp CDATA #REQUIRED > 906
 907
<!ELEMENT ClassificationNodeQueryResult 908
 (ClassificationNodeView*)> 909
 910
<!ELEMENT ClassificationNodeView EMPTY > 911
<!ATTLIST ClassificationNodeView 912
 objectURN CDATA #REQUIRED 913
 contentURL CDATA #IMPLIED 914
 objectID CDATA #IMPLIED > 915
 916
<!ELEMENT RegistryPackageQueryResult (RegistryPackageView*)> 917
 918

ebXML Registry January 2001

ebXML Registry Services Specification Page 35

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!ELEMENT RegistryPackageView EMPTY > 919
<!ATTLIST RegistryPackageView 920
 objectURN CDATA #REQUIRED 921
 contentURL CDATA #IMPLIED 922
 objectID CDATA #IMPLIED > 923
 924
<!ELEMENT OrganizationQueryResult (OrganizationView*)> 925
 926
<!ELEMENT OrganizationView EMPTY > 927
<!ATTLIST OrganizationView 928
 orgURN CDATA #REQUIRED 929
 contactURL CDATA #IMPLIED 930
 objectID CDATA #IMPLIED > 931
 932
<!ELEMENT StatusResult (Success | (Exception | Warning)+ > 933
 934
 <!ELEMENT Success EMPTY > 935
 936
 <!ELEMENT Exception (#PCDATA)> 937
 <!ATTLIST Exception 938
 code CDATA #REQUIRED > 939
 940
 <!ELEMENT Warning (#PCDATA)> 941
 <!ATTLIST Warning 942
 code CDATA #REQUIRED > 943

Semantic Rules 944

1. The semantic rules for each FilterQuery alternative are specified in 945
subsequent subsections. 946

2. Each FilterQueryResult is a set of XML reference elements to identify each 947
instance of the result set. Each XML attribute carries a value derived from the 948
value of an attribute specified in the Registry Information Model as follows: 949

a) objectID is the value of the ID attribute of the Object class, 950

b) objectURN and orgURN are URN values derived from the object ID, 951

c) contentURL is a URL value derived from the contentURI attribute of the 952
RegistryEntry class, 953

d) timestamp is a literal value to represent the value of the timestamp 954
attribute of the AuditableEvent class. 955

3. An Exception indicates that The FilterQuery was not successful, so the 956
FilterQueryResult is empty. A warning indicates that the FilterQuery was 957
successful, so the FilterQueryResult is accurate, but the warning may give 958
additional information back to the user. 959

4. If any exception or warning results, then it is returned as the appropriate 960
alternative of the StatusResult element. NOTE: This StatusResult may need 961
to be modified to fit more closely with the ebXML TRP specification. 962

963

ebXML Registry January 2001

ebXML Registry Services Specification Page 36

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.2 RegistryEntryQuery 963

Purpose 964

To identify a set of registry entry instances as the result of a query over selected 965
registry metadata. 966

RIM Binding 967

 968

Definition 969
 970
<!ELEMENT RegistryEntryQuery 971
 (RegistryEntryFilter?, 972
 AsSourceAssociation*, 973
 AsTargetAssociation*, 974
 RegistryEntryClassification*, 975
 SubmittingOrgFilter?, 976
 ResponsibleOrgFilter?, 977
 ExternalLinkFilter*, 978
 RegistryEntryAuditableEvent*)> 979
 980
<!ELEMENT AsSourceAssociation 981
 (AssociationFilter?, 982
 RegistryEntryFilter?)> 983
 984
<!ELEMENT AsTargetAssociation 985
 (AssociationFilter?, 986
 RegistryEntryFilter?)> 987
 988
<!ELEMENT RegistryEntryClassification 989

RegistryEntry

Association Classification Organization Organization Auditable
Event Association

AsSource SubmittingOrg ResponsibleOrg
AsTarget

Registry
Entry

Registry
Entry

Classification
Node

Contact Contact

Target Source

ExternalLink

User

Organization

ebXML Registry January 2001

ebXML Registry Services Specification Page 37

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 (ClassificationFilter?, 990
 ClassificationNodeFilter?)> 991
 992
<!ELEMENT SubmittingOrgFilter 993
 (OrganizationFilter?, 994
 ContactFilter?)> 995
 996
<!ELEMENT ResponsibleOrgFilter 997
 (OrganizationFilter?, 998
 ContactFilter?)> 999
 1000
<!ELEMENT RegistryEntryAuditableEvent 1001
 (AuditableEventFilter?, 1002
 UserFilter?, 1003
 OrganizationFilter?)> 1004

Semantic Rules 1005

1. Let RE denote the set of all persistent RegistryEntry instances in the Registry. 1006
The following steps will eliminate instances in RE that do not satisfy the 1007
conditions of the specified filters. 1008

a) If a RegistryEntryFilter is not specified, or if RE is empty, then continue 1009
below; otherwise, let x be a registry entry in RE. If x does not satisfy the 1010
RegistryEntryFilter as defined in section 8.2.9, then remove x from RE. 1011

b) If an AsSourceAssociation element is not specified, or if RE is empty, then 1012
continue below; otherwise, let x be a remaining registry entry in RE. If x is 1013
not the source object of some Association instance, then remove x from 1014
RE; otherwise, treat each AsSourceAssociation element separately as 1015
follows: 1016

If no AssociationFilter is specified within AsSourceAssociation, then let AF 1017
be the set of all Association instances that have x as a source object; 1018
otherwise, let AF be the set of Association instances that satisfy the 1019
AssociationFilter and have x as the source object. If AF is empty, then 1020
remove x from RE. If no RegistryEntryFilter is specified within 1021
AsSourceAssociation, then let RET be the set of all RegistryEntry 1022
instances that are the target object of some element of AF; otherwise, let 1023
RET be the set of RegistryEntry instances that satisfy the 1024
RegistryEntryFilter and are the target object of some element of AF. If 1025
RET is empty, then remove x from RE. 1026

c) If an AsTargetAssociation element is not specified, or if RE is empty, then 1027
continue below; otherwise, let x be a remaining registry entry in RE. If x is 1028
not the target object of some Association instance, then remove x from 1029
RE; otherwise, treat each AsTargetAssociation element separately as 1030
follows: 1031

ebXML Registry January 2001

ebXML Registry Services Specification Page 38

Copyright © ebXML 2000 & 2001. All Rights Reserved.

If no AssociationFilter is specified within AsTargetAssociation, then let AF 1032
be the set of all Association instances that have x as a target object; 1033
otherwise, let AF be the set of Association instances that satisfy the 1034
AssociationFilter and have x as the target object. If AF is empty, then 1035
remove x from RE. If no RegistryEntryFilter is specified within 1036
AsTargetAssociation, then let RES be the set of all RegistryEntry 1037
instances that are the source object of some element of AF; otherwise, let 1038
RES be the set of RegistryEntry instances that satisfy the 1039
RegistryEntryFilter and are the source object of some element of AF. If 1040
RES is empty, then remove x from RE. 1041

d) If a RegistryEntryClassification element is not specified, or if RE is empty, 1042
then continue below; otherwise, let x be a remaining registry entry in RE. If 1043
x is not the source object of some Classification instance, then remove x 1044
from RE; otherwise, treat each RegistryEntryClassification element 1045
separately as follows: 1046

If no ClassificationFilter is specified within the RegistryEntryClassification, 1047
then let CL be the set of all Classification instances that have x as a 1048
source object; otherwise, let CL be the set of Classification instances that 1049
satisfy the ClassificationFilter and have x as the source object. If CL is 1050
empty, then remove x from RE. If no ClassificationNodeFilter is specified 1051
within RegistryEntryClassification, then let CN be the set of all 1052
ClassificationNode instances that are the target object of some element of 1053
CL; otherwise, let CN be the set of RegistryEntry instances that satisfy the 1054
ClassificationNodeFilter and are the target object of some element of CL. 1055
If CN is empty, then remove x from RE. 1056

e) If a SubmittingOrgFilter element is not specified, or if RE is empty, then 1057
continue below; otherwise, let x be a remaining registry entry in RE. If x 1058
does not have a submitting organization, then remove x from RE. If no 1059
OrganizationFilter is specified within SubmittingOrgFilter, then let SO be 1060
the set of all Organization instances that are the submitting organization 1061
for x; otherwise, let SO be the set of Organization instances that satisfy 1062
the OrganizationFilter and are the submitting organization for x. If SO is 1063
empty, then remove x from RE. If no ContactFilter is specified within 1064
SubmittingOrgFilter, then let CT be the set of all Contact instances that 1065
are the contacts for some element of SO; otherwise, let CT be the set of 1066
Contact instances that satisfy the ContactFilter and are the contacts for 1067
some element of SO. If CT is empty, then remove x from RE. 1068

ebXML Registry January 2001

ebXML Registry Services Specification Page 39

Copyright © ebXML 2000 & 2001. All Rights Reserved.

f) If a ResponsibleOrgFilter element is not specified, or if RE is empty, then 1069
continue below; otherwise, let x be a remaining registry entry in RE. If x 1070
does not have a responsible organization, then remove x from RE. If no 1071
OrganizationFilter is specified within ResponsibleOrgFilter, then let RO be 1072
the set of all Organization instances that are the responsible organization 1073
for x; otherwise, let RO be the set of Organization instances that satisfy 1074
the OrganizationFilter and are the responsible organization for x. If RO is 1075
empty, then remove x from RE. If no ContactFilter is specified within 1076
SubmittingOrgFilter, then let CT be the set of all Contact instances that 1077
are the contacts for some element of RO; otherwise, let CT be the set of 1078
Contact instances that satisfy the ContactFilter and are the contacts for 1079
some element of RO. If CT is empty, then remove x from RE. 1080

g) If an ExternalLinkFilter element is not specified, or if RE is empty, then 1081
continue below; otherwise, let x be a remaining registry entry in RE. If x is 1082
not linked to some ExternalLink instance, then remove x from RE; 1083
otherwise, treat each ExternalLinkFilter element separately as follows: 1084

Let EL be the set of ExternalLink instances that satisfy the 1085
ExternalLinkFilter and are linked to x. If EL is empty, then remove x from 1086
RE. 1087

h) If a RegistryEntryAuditableEvent element is not specified, or if RE is 1088
empty, then continue below; otherwise, let x be a remaining registry entry 1089
in RE. If x is not linked to some AuditableEvent instance, then remove x 1090
from RE; otherwise, treat each RegistryEntryAuditableEvent element 1091
separately as follows: 1092

If an AuditableEventsFilter is not specified within 1093
RegistryEntryAuditableEvent, then let AE be the set of all AuditableEvent 1094
instances for x; otherwise, let AE be the set of AuditableEvent instances 1095
that satisfy the AuditableEventFilter and are auditable events for x. If AE is 1096
empty, then remove x from RE. If an UserFilter is not specified within 1097
RegistryEntryAuditableEvent, then let AI be the set of all User instances 1098
linked to an element of AE; otherwise, let AI be the set of User instances 1099
that satisfy the UserFilter and are linked to an element of AE. If AI is 1100
empty, then remove x from RE. If an OrganizationFilter is not specified 1101
within RegistryEntryAuditableEvent, then let OG be the set of all 1102
Organization instances that are linked to an element of AI; otherwise, let 1103
OG be the set of Organization instances that satisfy the OrganizationFilter 1104
and are linked to an element of AI. If OG is empty, then remove x from 1105
RE. 1106

2. If RE is empty, then raise the warning: registry entry query result is empty; 1107
otherwise, return RE as the result of the RegistryEntryQuery. 1108

3. Return any accumulated warnings or exceptions as the StatusResult 1109
associated with the RegistryEntryQuery. 1110

ebXML Registry January 2001

ebXML Registry Services Specification Page 40

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Examples 1111

A client wants to establish a trading relationship with XYZ Corporation and wants 1112
to know if they have registered any of their business documents in the Registry. 1113
The following query returns a set of registry entry identifiers for currently 1114
registered items submitted by any organization whose name includes the string 1115
"XYZ". It does not return any registry entry identifiers for superceded, replaced, 1116
deprecated, or withdrawn items. 1117

 1118
<RegistryEntryQuery> 1119
 <RegistryEntryFilter> 1120
 Status EQ "Registered" -- code by Clause, Section 8.2.10 1121
 </RegistryEntryFilter> 1122
 <SubmittingOrgFilter> 1123
 <OrganizationFilter> 1124
 Name CONTAINS "XYZ" -- code by Clause, Section 8.2.10 1125
 </Organizationfilter> 1126
 </SubmittingOrgFilter> 1127
</RegistryEntryquery> 1128
 1129

A client is using the UNSPSC classification scheme and wants to identify all 1130
companies that deal with products classified as "Integrated circuit components", 1131
i.e. UNSPSC code "321118". The client knows that companies have registered 1132
their PartyProfile documents in the Registry, and that each profile has been 1133
classified by the products the company deals with. The following query returns a 1134
set of registry entry identifiers for profiles of companies that deal with integrated 1135
circuit components. 1136

 1137
<RegistryEntryQuery> 1138
 <RegistryEntryFilter> 1139
 ObjectType EQ "PartyProfile" AND -- code by Clause, Section 8.2.10 1140
 Status EQ "Registered" 1141
 </RegistryEntryFilter> 1142
 <RegistryEntryClassification> 1143
 <ClassificationNodeFilter> 1144
 ID STARTSWITH "urn:un:spsc:321118 -- code by Clause, Section 8.2.10 1145
 </ClassificationNodeFilter> 1146
 <RegistryEntryClassification> 1147
</RegistryEntryQuery> 1148

 1149

A client application needs all items that are classified by two different 1150
classification schemes, one based on "Industry" and another based on 1151
"Geography". Both schemes have been defined by ebXML and are registered. 1152
The root nodes of each scheme are identified by "urn:ebxml:cs:industry" and 1153
"urn:ebxml:cs:geography", respectively. The following query identifies registry 1154
entries for all registered items that are classified by "Industry/Automotive" and by 1155
"Geography/Asia/Japan". 1156

 1157

ebXML Registry January 2001

ebXML Registry Services Specification Page 41

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<RegistryEntryQuery> 1158
 <RegistryEntryClassification> 1159
 <ClassificationNodeFilter> 1160
 ID STARTSWITH "urn:ebxml:cs:industry" AND 1161
 Path EQ "Industry/Automotive" -- code by Clause, Section 8.2.10 1162
 </ClassificationNodeFilter> 1163
 <ClassificationNodeFilter> 1164
 ID STARTSWITH "urn:ebxml:cs:geography" AND 1165
 Path EQ "Geography/Asia/Japan" -- code by Clause, Section 8.2.10 1166
 </ClassificationNodeFilter> 1167
 </RegistryEntryClassification> 1168
</RegistryEntryQuery> 1169

 1170

A client application wishes to identify all registry Package instances that have a 1171
given registry entry as a member of the package. The following query identifies 1172
all registry packages that contain the registry entry identified by URN 1173
"urn:path:myitem" as a member: 1174

 1175
<RegistryEntryQuery> 1176
 <RegistryEntryFilter> 1177
 objectType EQ "RegistryPackage" -- code by Clause, Section 8.2.10 1178
 </RegistryEntryFilter> 1179
 <AsSourceAssociation> 1180
 <AssociationFilter> -- code by Clause, Section 8.2.10 1181
 AssociationType EQ "HasMember" AND 1182
 TargetObject EQ "urn:path:myitem" 1183
 </AssociationFilter> 1184
 </AsSourceAssociation> 1185
</RegistryEntryQuery> 1186

 1187

A client application wishes to identify all ClassificationNode instances that have 1188
some given keyword as part of their name or description. The following query 1189
identifies all registry classification nodes that contain the keyword "transistor" as 1190
part of their name or as part of their description. 1191

 1192
<RegistryEntryQuery> 1193
 <RegistryEntryFilter> 1194
 ObjectType="ClassificationNode" AND 1195
 (Name CONTAINS "transistor" OR -- code by Clause, Section 8.2.10 1196
 Description CONTAINS "transistor") 1197
 </RegistryEntryFilter> 1198
</RegistryEntryQuery> 1199

1200

ebXML Registry January 2001

ebXML Registry Services Specification Page 42

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.3 AuditableEventQuery 1200

Purpose 1201

To identify a set of auditable event instances as the result of a query over 1202
selected registry metadata. 1203

RIM Binding 1204

 1205

 1206

Definition 1207

 1208
<!ELEMENT AuditableEventQuery 1209
 (AuditableEventFilter?, 1210
 RegistryEntryQuery*, 1211
 UserFilter?, 1212
 OrganizationQuery?)> 1213

 1214

Semantic Rules 1215

1. Let AE denote the set of all persistent AuditableEvent instances in the 1216
Registry. The following steps will eliminate instances in AE that do not satisfy 1217
the conditions of the specified filters. 1218

 1219

AuditableEvent

RegistryEntry User

Organization

ebXML Registry January 2001

ebXML Registry Services Specification Page 43

Copyright © ebXML 2000 & 2001. All Rights Reserved.

a) If an AuditableEventFilter is not specified, or if AE is empty, then continue 1220
below; otherwise, let x be an auditable event in AE. If x does not satisfy 1221
the AuditableEventFilter as defined in section 8.2.9, then remove x from 1222
AE. 1223

b) If a RegistryEntryQuery element is not specified, or if AE is empty, then 1224
continue below; otherwise, let x be a remaining auditable event in AE. 1225
Treat each RegistryEntryQuery element separately as follows: 1226

Let RE be the result set of the RegistryEntryQuery as defined in section 1227
8.2.2. If x is not an auditable event for some registry entry in RE, then 1228
remove x from AE. 1229

c) If an UserFilter element is not specified, or if AE is empty, then continue 1230
below; otherwise, let x be a remaining auditable event in AE. Let AI be the 1231
set of all User instances that satisfy the UserFilter and are linked to x as 1232
their auditable event. If AI is empty, then remove x from AE. 1233

d) If an OrganizationQuery element is not specified, or if RE is empty, then 1234
continue below; otherwise, let x be a remaining registry entry in RE. If an 1235
UserFilter element is not specified, then let AI be the set of all User 1236
instances that are linked to x as their auditable event; otherwise, let AI be 1237
the set of all User instances that satisfy the UserFilter and are linked to x 1238
as their auditable event. Let OG be the set of Organization instances that 1239
are the organization of an element in AI and are in the result set of the 1240
OrganizationQuery. If OG is empty, then remove x from AE. 1241

2. If AE is empty, then raise the warning: auditable event query result is empty. 1242

3. Return AE as the result of the AuditableEventQuery. 1243

4. Return any accumulated warnings or exceptions as the StatusResult 1244
associated with the AuditableEventQuery. 1245

Examples 1246

A Registry client has registered an item and it has been assigned a URN 1247
identifier "urn:path:myitem". The client is now interested in all events in the past 1248
year that have impacted that item. The following query will return a set of 1249
AuditableEvent identifiers for all such events. 1250

 1251
<AuditableEventquery> 1252
 <AuditableEventFilter> 1253
 Timestamp GE "2001-01-01" AND -- code by Clause, Section 8.2.10 1254
 RegistryEntry EQ "urn:path:myitem" 1255
 </AuditableEventFilter> 1256
</AuditableEventQuery> 1257

 1258

ebXML Registry January 2001

ebXML Registry Services Specification Page 44

Copyright © ebXML 2000 & 2001. All Rights Reserved.

A client company has many registered objects in the Registry. The Registry 1259
allows events submitted by other organizations to have an impact on your 1260
registered items, e.g. new classifications and new associations. The following 1261
query will return a set of identifiers for all events that have an impact on an item 1262
that you submitted, and you are responsible for, but the event was initiated by 1263
some other party. 1264

 1265
<AuditableEventquery> 1266
 <RegistryEntryQuery> 1267
 <SubmittingOrgFilter> 1268
 <OrganizationFilter> 1269
 ID EQ "urn:somepath:myorg" -- code by Clause, Section 8.2.10 1270
 </OrganizationFilter> 1271
 </SubmittingOrgFilter> 1272
 <ResponsibleOrgFilter> 1273
 <OrganizationFilter> 1274
 ID EQ "urn:somepath:myorg" -- code by Clause, Section 8.2.10 1275
 </OrganizationFilter> 1276
 </ResponsibleOrgFilter> 1277
 </RegistryEntryQuery> 1278
 <UserFilter> 1279
 <OrganizationFilter> 1280
 ID NE "urn:somepath:myorg" -- code by Clause, Section 8.2.10 1281
 </OrganizationFilter> 1282
 </UserFilter> 1283
</AuditableEventQuery> 1284

1285

ebXML Registry January 2001

ebXML Registry Services Specification Page 45

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.4 ClassificationNodeQuery 1285

Purpose 1286

To identify a set of classification node instances as the result of a query over 1287
selected registry metadata. 1288

RIM Binding 1289

Definition 1290

 1291
<!ELEMENT ClassificationNodeQuery 1292
 (ClassificationNodeFilter?, 1293
 ClassifiesRegistryEntry*, 1294
 HasParentNode?, 1295
 HasSubnode*)> 1296
 1297

 <!ELEMENT ClassifiesRegistryEntry 1298
 (ClassificationFilter?, 1299
 RegistryEntryQuery?)> 1300

 1301
<!ELEMENT HasParentNode 1302
 (ClassificationNodeFilter?, 1303

 HasParentNode?)> 1304
 1305
<!ELEMENT HasSubnode 1306
 (ClassificationNodeFilter?, 1307
 HasSubnode*)> 1308

 1309

ClassificationNode

Classification

RegistryEntry

ClassificationNode

HasParentNode

ClassifiesRegistryEntry

ClassificationNode

HasSubnode

ebXML Registry January 2001

ebXML Registry Services Specification Page 46

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Semantic Rules 1310

1. Let CN denote the set of all persistent ClassificationNode instances in the 1311
Registry. The following steps will eliminate instances in CN that do not satisfy 1312
the conditions of the specified filters. 1313

a) If a ClassificationNodeFilter is not specified, or if CN is empty, then 1314
continue below; otherwise, let x be a classification node in CN. If x does 1315
not satisfy the ClassificationNodeFilter as defined in section 8.2.9, then 1316
remove x from AE. 1317

b) If a ClassifiesRegistryEntry element is not specified, or if CN is empty, 1318
then continue below; otherwise, let x be a remaining classification node in 1319
CN. If x is not the target object of some Classification instance, then 1320
remove x from CN; otherwise, treat each ClassifiesRegistryEntry element 1321
separately as follows: 1322

If no ClassificationFilter is specified within the ClassifiesRegistryEntry 1323
element, then let CL be the set of all Classification instances that have x 1324
as the target object; otherwise, let CL be the set of Classification instances 1325
that satisfy the ClassificationFilter and have x as the target object. If CL is 1326
empty, then remove x from CN. If no RegistryEntryQuery is specified 1327
within the ClassifiesRegistryEntry element, then let RES be the set of all 1328
RegistryEntry instances that are the source object of some classification 1329
instance in CL; otherwise, let RE be the result set of the 1330
RegistryEntryQuery as defined in section 8.2.2 and let RES be the set of 1331
all instances in RE that are the source object of some classification in CL. 1332
If RES is empty, then remove x from CN. 1333

c) If a HasParentNode element is not specified, or if CN is empty, then 1334
continue below; otherwise, let x be a remaining classification node in CN 1335
and execute the following paragraph with n=x. 1336

Let n be a classification node instance. If n does not have a parent node 1337
(i.e. if n is a root node), then remove x from CN. Let p be the parent node 1338
of n. If a ClassificationNodeFilter element is directly contained in 1339
HasParentNode and if p does not satisfy the ClassificationNodeFilter, then 1340
remove x from CN. 1341

If another HasParentNode element is directly contained within this 1342
HasParentNode element, then repeat the previous paragraph with n=p. 1343

d) If a HasSubnode element is not specified, or if CN is empty, then continue 1344
below; otherwise, let x be a remaining classification node in CN. If x is not 1345
the parent node of some ClassificationNode instance, then remove x from 1346
CN; otherwise, treat each HasSubnode element separately and execute 1347
the following paragraph with n = x. 1348

ebXML Registry January 2001

ebXML Registry Services Specification Page 47

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Let n be a classification node instance. If a ClassificationNodeFilter is not 1349
specified within the HasSubnode element then let CNC be the set of all 1350
classification nodes that have n as their parent node; otherwise, let CNC 1351
be the set of all classification nodes that satisfy the 1352
ClassificationNodeFilter and have n as their parent node. If CNC is empty 1353
then remove x from CN; otherwise, let y be an element of CNC and 1354
continue with the next paragraph. 1355

If the HasSubnode element is terminal, i.e. if it does not directly contain 1356
another HasSubnode element, then continue below; otherwise, repeat the 1357
previous paragraph with the new HasSubnode element and with n = y. 1358

2. If CN is empty, then raise the warning: classification node query result is 1359
empty. 1360

3. Return CN as the result of the ClassificationNodeQuery. 1361

4. Return any accumulated warnings or exceptions as the StatusResult 1362
associated with the ClassificationNodeQuery. 1363

Examples 1364

A client application wishes to identify all classification nodes defined in the 1365
Registry that are root nodes and have a name that contains the phrase “product 1366
code” or the phrase “product type”. Note: By convention, if a classification node 1367
has no parent (i.e. is a root node), then the parent attribute of that instance is set 1368
to null and is represented as a literal by a zero length string. 1369
 1370

<ClassificationNodeQuery> 1371
 <ClassificationNodeFilter> 1372
 (name CONTAINS “product code” OR -- code by Clause, Section 8.2.10 1373
 name CONTAINS “product type”) AND 1374
 parent EQ “” 1375
 </ClassificationNodeFilter> 1376
</ClassificationNodeQuery> 1377

 1378

A client application wishes to identify all of the classification nodes at the third 1379
level of a classification scheme hierarchy. The client knows that the URN 1380
identifier for the root node is urn:ebxml:cs:myroot. The following query identifies 1381
all nodes at the second level under “myroot” (i.e. third level overall). 1382

 1383
<ClassificationNodeQuery> 1384
 <HasParentNode> 1385
 <HasParentNode> 1386

 <ClassificationNodeFilter> 1387
 ID EQ “urn:ebxml:cs:myroot” -- code by Clause, Section 8.2.10 1388
 </ClassificationNodeFilter> 1389
 </HasParentNode> 1390
</HasParentNode> 1391

</ClassificationNodeQuery> 1392
1393

ebXML Registry January 2001

ebXML Registry Services Specification Page 48

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.5 RegistryPackageQuery 1393

Purpose 1394

To identify a set of registry package instances as the result of a query over 1395
selected registry metadata. 1396

RIM Binding 1397

Definition 1398
 1399
<!ELEMENT RegistryPackageQuery 1400
 (PackageFilter?, 1401
 PackageHasMember*)> 1402
 1403
<!ELEMENT PackageHasMember 1404
 (RegistryEntryQuery?,)> 1405

 1406

Semantic Rules 1407

1. Let RP denote the set of all persistent Package instances in the Registry. The 1408
following steps will eliminate instances in RP that do not satisfy the conditions 1409
of the specified filters. 1410

a) If a PackageFilter is not specified, or if RP is empty, then continue below; 1411
otherwise, let x be a package instance in RP. If x does not satisfy the 1412
PackageFilter as defined in section 8.2.9, then remove x from RP. 1413

b) If a PackageHasMember element is not directly contained in the 1414
RegistryPackageQuery, or if RP is empty, then continue below; otherwise, 1415
let x be a remaining package instance in RP. If x is an empty package, 1416
then remove x from RP; otherwise, treat each PackageHasMember 1417
element separately as follows: 1418

 1419

Package

RegistryEntry

HasMember

ebXML Registry January 2001

ebXML Registry Services Specification Page 49

Copyright © ebXML 2000 & 2001. All Rights Reserved.

If a RegistryEntryQuery element is not directly contained in the 1420
PackageHasMember element, then let PM be the set of all RegistryEntry 1421
instances that are members of the package x; otherwise, let RE be the set 1422
of RegistryEntry instances returned by the RegistryEntryQuery as defined 1423
in section 8.2.2 and let PM be the subset of RE that are members of the 1424
package x. If PM is empty, then remove x from RP. 1425

2. If RP is empty, then raise the warning: registry package query result is empty. 1426

3. Return RP as the result of the RegistryPackageQuery. 1427

4. Return any accumulated warnings or exceptions as the StatusResult 1428
associated with the RegistryPackageQuery. 1429

Examples 1430

A client application wishes to identify all package instances in the Registry that 1431
contain an Invoice extrinsic object as a member of the package. 1432
 1433
 <RegistryPackageQuery> 1434
 <PackageHasMember> 1435
 <RegistryEntryQuery> 1436
 <RegistryEntryFilter> 1437
 objectType EQ “Invoice” -- code by Clause, Section 8.2.10 1438
 </RegistryEntryFilter> 1439
 </RegistryEntryQuery> 1440
 </PackageHasMember> 1441
 </RegistryPackageQuery> 1442
 1443

A client application wishes to identify all package instances in the Registry that 1444
are not empty. 1445
 1446

<RegistryEntryQuery> 1447
 <PackageHasMember/> 1448
</RegistryEntryQuery> 1449
 1450

A client application wishes to identify all package instances in the Registry that 1451
are empty. Since the RegistryPackageQuery is not set up to do negations, clients 1452
will have to do two separate RegistryPackageQuery requests, one to find all 1453
packages and another to find all non-empty packages, and then do the set 1454
difference themselves. Alternatively, they could do a more complex 1455
RegistryEntryQuery and check that the packaging association between the 1456
package and its members is non-existent. 1457

Note: A registry package is an intrinsic RegistryEntry instance that is completely 1458
determined by its associations with its members. Thus a RegistryPackageQuery 1459
can always be re-specified as an equivalent RegistryEntryQuery using 1460
appropriate “AsSource” and “As Target” associations. However, the equivalent 1461
RegistryEntryQuery is often more complicated to write. 1462

1463

ebXML Registry January 2001

ebXML Registry Services Specification Page 50

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.6 OrganizationQuery 1463

Purpose 1464

To identify a set of organization instances as the result of a query over selected 1465
registry metadata. 1466

RIM Binding 1467

 1468

Definition 1469
 1470
<!ELEMENT OrganizationQuery 1471
 (OrganizationFilter?, 1472
 SubmitsEntry*, 1473
 HasParentOrganization?, 1474
 InvokesEvent*, 1475
 ContactFilter*)> 1476
 1477
<!ELEMENT SubmitsEntry (RegistryEntryQuery?)> 1478
 1479
<!ELEMENT HasParentOrganization 1480
 (OrganizationFilter?, 1481
 HasParentOrganization?)> 1482
 1483
<!ELEMENT InvokesEvent 1484
 (UserFilter?, 1485
 AuditableEventFilter?, 1486

Organization

Organization

HasParentOrg

RegistryEntry

Contact

User

SubmitsEntry

AuditableEvent

InvokesEvent

RegistryEntry

ebXML Registry January 2001

ebXML Registry Services Specification Page 51

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 RegistryEntryQuery?)> 1487

Semantic Rules 1488

1. Let ORG denote the set of all persistent Organization instances in the 1489
Registry. The following steps will eliminate instances in ORG that do not 1490
satisfy the conditions of the specified filters. 1491

a) If an OrganizationFilter element is not directly contained in the 1492
OrganizationQuery element, or if ORG is empty, then continue below; 1493
otherwise, let x be an organization instance in ORG. If x does not satisfy 1494
the OrganizationFilter as defined in section 8.2.9, then remove x from RP. 1495

b) If a SubmitsEntry element is not specified within the OrganizationQuery, or 1496
if ORG is empty, then continue below; otherwise, consider each 1497
SubmitsEntry element separately as follows: 1498

If no RegistryEntryQuery is specified within the SubmitsEntry element, 1499
then let RES be the set of all RegistryEntry instances that have been 1500
submitted to the Registry by organization x; otherwise, let RE be the result 1501
of the RegistryEntryQuery as defined in section 8.2.2 and let RES be the 1502
set of all instances in RE that have been submitted to the Registry by 1503
organization x. If RES is empty, then remove x from ORG. 1504

c) If a HasParentOrganization element is not specified within the 1505
OrganizationQuery, or if ORG is empty, then continue below; otherwise, 1506
execute the following paragraph with o = x: 1507

Let o be an organization instance. If an OrganizationFilter is not specified 1508
within the HasParentOrganization and if o has no parent (i.e. if o is a root 1509
organization in the Organization hierarchy), then remove x from ORG; 1510
otherwise, let p be the parent organization of o. If p does not satisfy the 1511
OrganizationFilter, then remove x from ORG. 1512

If another HasParentOrganization element is directly contained within this 1513
HasParentOrganization element, then repeat the previous paragraph with 1514
o = p. 1515

d) If an InvokesEvent element is not specified within the OrganizationQuery, 1516
or if ORG is empty, then continue below; otherwise, consider each 1517
InvokesEvent element separately as follows: 1518

ebXML Registry January 2001

ebXML Registry Services Specification Page 52

Copyright © ebXML 2000 & 2001. All Rights Reserved.

If an UserFilter is not specified, and if x is not the submitting organization 1519
of some AuditableEvent instance, then remove x from ORG. If an 1520
AuditableEventFilter is not specified, then let AE be the set of all 1521
AuditableEvent instances that have x as the submitting organization; 1522
otherwise, let AE be the set of AuditableEvent instances that satisfy the 1523
AuditableEventFilter and have x as the submitting organization. If AE is 1524
empty, then remove x from ORG. If a RegistryEntryQuery is not specified 1525
in the InvokesEvent element, then let RES be the set of all RegistryEntry 1526
instances associated with an event in AE; otherwise, let RE be the result 1527
set of the RegistryEntryQuery, as specified in section 8.2.2, and let RES 1528
be the subset of RE of entries submitted by x. If RES is empty, then 1529
remove x from ORG. 1530

e) If a ContactFilter is not specified within the OrganizationQuery, or if ORG 1531
is empty, then continue below; otherwise, consider each ContactFilter 1532
separately as follows: 1533

Let CT be the set of Contact instances that satisfy the ContactFilter and 1534
are the contacts for organization x. If CT is empty, then remove x from 1535
ORG. 1536

2. If ORG is empty, then raise the warning: organization query result is empty. 1537

3. Return ORG as the result of the OrganizationQuery. 1538

4. Return any accumulated warnings or exceptions as the StatusResult 1539
associated with the OrganizationQuery. 1540

Examples 1541

A client application wishes to identify a set of organizations, based in France, that 1542
have submitted a PartyProfile extrinsic object this year. 1543
 1544
 <OrganizationQuery> 1545
 <OrganizationFilter> 1546
 country EQ “France” -- code by Clause, Section 8.2.10 1547
 </OrganizationFilter> 1548
 <SubmitsEntry> 1549
 <RegistryEntryQuery> 1550
 <RegistryEntryFilter> 1551
 objectType EQ “PartyProfile” -- code by Clause, Section 8.2.10 1552
 </RegistryEntryFilter> 1553
 <RegistryEntryAuditableEvent> 1554
 <AuditableEventFilter> 1555
 timestamp GE “2001-01-01” -- code by Clause, Section 8.2.10 1556
 </AuditableEventFilter> 1557
 </RegistryEntryAuditableEvent> 1558
 </RegistryEntryQuery> 1559
 </SubmitsEntry> 1560
 </OrganizationQuery> 1561

 1562

ebXML Registry January 2001

ebXML Registry Services Specification Page 53

Copyright © ebXML 2000 & 2001. All Rights Reserved.

A client application wishes to identify all organizations that have XYZ, 1563
Corporation as a parent. The client knows that the URN for XYZ, Corp. is 1564
urn:ebxml:org:xyz, but there is no guarantee that subsidiaries of XYZ have a 1565
URN that uses the same format, so a full query is required. 1566

 1567
<OrganizationQuery> 1568
 <HasParentOrganization> 1569
 <OrganizationFilter> 1570
 ID = “urn:ebxml:org:xyz” -- code by Clause, Section 8.2.10 1571
 </OrganizationFilter> 1572
 </HasParentOrganization> 1573
</OrganizationQuery> 1574

1575

ebXML Registry January 2001

ebXML Registry Services Specification Page 54

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.7 GetRegistryEntry 1575

Purpose 1576

To construct an XML document that contains selected registry metadata 1577
associated with the registry entries identified by a RegistryEntryQuery. NOTE: 1578
Initially, the RegistryEntryQuery could be the URN identifier for a single registry 1579
entry. 1580

Definition 1581

 1582
<!ELEMENT GetRegistryEntry 1583
 (RegistryEntryQuery, 1584
 WithClassifications?, 1585
 WithAsSourceAssociations?, 1586
 WithAsTargetAssociations?, 1587
 WithAuditableEvents?, 1588
 WithExternalLinks?)> 1589
 1590
<!ELEMENT WithClassifications (ClassificationFilter?)> 1591
<!ELEMENT WithAsSourceAssociations (AssociationFilter?)> 1592
<!ELEMENT WithAsTargetAssociations (AssociationFilter?)> 1593
<!ELEMENT WithAuditableEvents (AuditableEventFilter?)> 1594
<!ELEMENT WithExternalLinks (ExternalLinkFilter?)> 1595
 1596
<!ELEMENT GetRegistryEntryResult 1597
 (RegistryEntryMetadata*, StatusResult)> 1598
 1599
<!ELEMENT RegistryEntryMetadata 1600
 (RegistryEntry, 1601
 Classification*, 1602
 AsSourceAssociations?, 1603
 AsTargetAssociations?, 1604
 AuditableEvent*, 1605
 ExternalLink*)> 1606
 1607
<!ELEMENT AsSourceAssociations (Association*)> 1608
<!ELEMENT AsTargetAssociations (Association*)> 1609

Semantic Rules 1610

1. The RegistryEntry, Classification, Association, AuditableEvent, and 1611
ExternalLink elements contained in the GetRegistryEntryResult are defined 1612
by the ebXML Registry DTD specified in Appendix A.2. 1613

2. Execute the RegistryEntryQuery according to the Semantic Rules specified in 1614
section 8.2.2, and let R be the result set of identifiers for registry entry 1615
instances. Let S be the set of status elements returned in the StatusResult. If 1616
any status element in S is an exception condition, then stop execution and 1617
return the same StatusResult element in the GetRegistryEntryResult. 1618

ebXML Registry January 2001

ebXML Registry Services Specification Page 55

Copyright © ebXML 2000 & 2001. All Rights Reserved.

3. If the set R is empty, then do not return a RegistryEntryMetadata subelement 1619
in the GetRegistryEntryResult. Instead, raise the warning: no resulting registry 1620
entry. Add this warning to the StatusResult returned by the 1621
RegistryEntryQuery and return this enhanced StatusResult with the 1622
GetRegistryEntryResult. 1623

4. For each registry entry E referenced by an element of R, use the attributes of 1624
E to create a new RegistryEntry element as defined in Appendix A.2. Then 1625
create a new RegistryEntryMetadata element as defined above to be the 1626
parent element of that RegistryEntry element. 1627

5. If no With option is specified, then the resulting RegistryEntryMetadata 1628
element has no Classification, AsSourceAssociations, AsTargetAssociations, 1629
AuditableEvent, or ExternalData subelements. The set of 1630
RegistryEntryMetadata elements, with the StatusResult from the 1631
RegistryEntryQuery, is returned as the GetRegistryEntryResult. 1632

6. If WithClassifications is specified, then for each E in R do the following: If a 1633
ClassificationFilter is not present, then let C be any classification instance 1634
linked to E; otherwise, let C be a classification instance linked to E that 1635
satisfies the ClassificationFilter (Section 8.2.9). For each such C, create a 1636
new Classification element as defined in Appendix A.2. Add these 1637
Classification elements to their parent RegistryEntryMetadata element. 1638

7. If WithAsSourceAssociations is specified, then for each E in R do the 1639
following: If an AssociationFilter is not present, then let A be any association 1640
instance whose source object is E; otherwise, let A be an association 1641
instance that satisfies the AssociationFilter (Section 8.2.9) and whose source 1642
object is E. For each such A, create a new Association element as defined in 1643
Appendix A.2. Add these Association elements as subelements of the 1644
WithAsSourceAssociations and add that element to its parent 1645
RegistryEntryMetadata element. 1646

8. If WithAsTargetAssociations is specified, then for each E in R do the 1647
following: If an AssociationFilter is not present, then let A be any association 1648
instance whose target object is E; otherwise, let A be an association instance 1649
that satisfies the AssociationFilter (Section 8.2.9) and whose target object is 1650
E. For each such A, create a new Association element as defined in Appendix 1651
A.2. Add these Association elements as subelements of the 1652
WithAsTargetAssociations and add that element to its parent 1653
RegistryEntryMetadata element. 1654

9. If WithAuditableEvents is specified, then for each E in R do the following: If an 1655
AuditableEventFilter is not present, then let A be any auditable event instance 1656
linked to E; otherwise, let A be any auditable event instance linked to E that 1657
satisfies the AuditableEventFilter (Section 8.2.9). For each such A, create a 1658
new AuditableEvent element as defined in Appendix A.2. Add these 1659
AuditableEvent elements to their parent RegistryEntryMetadata element. 1660

ebXML Registry January 2001

ebXML Registry Services Specification Page 56

Copyright © ebXML 2000 & 2001. All Rights Reserved.

10. If WithExternalLinks is specified, then for each E in R do the following: If an 1661
ExternalLinkFilter is not present, then let L be any external link instance linked 1662
to E; otherwise, let L be any external link instance linked to E that satisfies the 1663
ExternalLinkFilter (Section 8.2.9). For each such D, create a new ExternalLink 1664
element as defined in Appendix A.2. Add these ExternalLink elements to their 1665
parent RegistryEntryMetadata element. 1666

11. If any warning or exception condition results, then add the code and the 1667
message to the StatusResult that came from the RegistryEntryQuery result. 1668

12. Return the set of RegistryEntryMetadata elements and the revised 1669
StatusResult as the content of the GetRegistryEntryResult. 1670

 1671

Examples 1672

A customer of XYZ Corporation has been using a PurchaseOrder DTD registered 1673
by XYZ some time ago. Its URN identifier is "urn:com:xyz:po:325". The customer 1674
wishes to check on the current status of that DTD, especially if it has been 1675
superceded or replaced, and get all of its current classifications. The following 1676
query request will return an XML document with the registry entry for the existing 1677
DTD as the root, with all of its classifications, and with associations to registry 1678
entries for any items that have superceded or replaced it. 1679

 1680
<GetRegistryEntry> 1681
 <RegistryEntryQuery> 1682
 <RegistryEntryFilter> 1683
 ID EQ "urn:com:xyz:po:325" -- code by Clause, Section 8.2.10 1684
 </RegistryEntryFilter> 1685
 </RegistryEntryQuery> 1686
 <WithClassifications/> 1687
 <WithAsSourceAssociations> 1688
 <AssociationFilter> -- code by Clause, Section 8.2.10 1689
 AssociationType EQUALS "SupercededBy" OR 1690
 AssociationType EQUALS "ReplacedBy" 1691
 </AssociationFilter> 1692
 </WithAsSourceAssociations> 1693
</GetRegistryEntry> 1694

 1695

A client of the Registry registered an XML DTD several years ago and is now 1696
thinking of replacing it with a revised version. The identifier for the existing DTD 1697
is "urn:xyz:dtd:po97". The proposed revision is not completely upward compatible 1698
with the existing DTD. The client desires a list of all registered items that use the 1699
existing DTD so they can assess the impact of an incompatible change. The 1700
following query returns an XML document that is a list of all RegistryEntry 1701
elements that represent registered items that use, contain, or extend the given 1702
DTD. The document also links each RegistryEntry element in the list to an 1703
element for the identified association. 1704

ebXML Registry January 2001

ebXML Registry Services Specification Page 57

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 1705
 <GetRegistryEntry> 1706
 <RegistryEntryQuery> 1707
 <AsSourceAssociation> 1708
 <AssociationFilter> -- code by Clause, Section 8.2.10 1709
 AssociationType EQ "Contains" OR 1710
 AssociationType EQ "Uses" OR 1711
 AssociationType EQ "Extends" 1712
 </AssociationFilter> 1713
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10 1714
 ID = "urn:xyz:dtd:po97" 1715
 </RegistryEntryFilter> 1716
 </AsSourceAssociation> 1717
 </RegistryEntryQuery> 1718
 <WithAsSourceAssociations> 1719
 <AssociationFilter> -- code by Clause, Section 8.2.10 1720
 AssociationType EQ "Contains" OR 1721
 AssociationType EQ "Uses" OR 1722
 AssociationType EQ "Extends" 1723
 </AssociationFilter> 1724
 </WithAsSourceAssociations> 1725
 </GetRegistryEntry> 1726

 1727

A user has been browsing the registry and has found a registry entry that 1728
describes a package of core-components that should solve the user's problem. 1729
The package URN identifier is "urn:com:cc:pkg:ccstuff". Now the user wants to 1730
know what's in the package. The following query returns an XML document with 1731
a registry entry for each member of the package along with that member's Uses 1732
and PackageHasMember associations. 1733

 1734
 <GetRegistryEntry> 1735
 <RegistryEntryQuery> 1736
 <AsTargetAssociation> 1737
 <AssociationFilter> -- code by Clause, Section 8.2.10 1738
 AssociationType EQ "HasMember" 1739
 </AssociationFilter> 1740
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10 1741
 ID = " urn:com:cc:pkg:ccstuff " 1742
 </RegistryEntryFilter> 1743
 </AsTargetAssociation> 1744
 </RegistryEntryQuery> 1745
 <WithAsSourceAssociations> 1746
 <AssociationFilter> -- code by Clause, Section 8.2.10 1747
 AssociationType EQ "HasMember" OR 1748
 AssociationType EQ "Uses" 1749
 </AssociationFilter> 1750
 </WithAsSourceAssociations> 1751
 </GetRegistryEntry> 1752

 1753
1754

ebXML Registry January 2001

ebXML Registry Services Specification Page 58

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.8 GetRepositoryItem 1754

Purpose 1755

To construct an XML document that contains one or more repository items, and 1756
some associated metadata, by submitting a RegistryEntryQuery to the 1757
registry/repository that holds the desired objects. NOTE: Initially, the 1758
RegistryEntryQuery could be the URN identifier for a single registry entry. 1759

Definition 1760
 1761
<!ELEMENT GetRepositoryItem 1762
(RegistryEntryQuery, 1763
 RecursiveAssociationOption?, 1764
 WithShortDescription?)> 1765
 1766
<!ELEMENT RecursiveAssociationOption (AssociationRole+)> 1767
<!ATTLIST RecursiveAssociationOption 1768
 depthLimit CDATA #IMPLIED > 1769
 1770
<!ELEMENT AssociationRole EMPTY > 1771
<!ATTLIST AssociationRole 1772
 role CDATA #REQUIRED > 1773
 1774
<!ELEMENT WithShortDescription EMPTY > 1775
 1776
<!ELEMENT GetRepositoryItemResult 1777
 (RepositoryItem*, StatusResult)> 1778
 1779
<!ELEMENT RepositoryItem 1780
 (ClassificationScheme 1781
 | RegistryPackage 1782
 | ExtrinsicObject 1783
 | WithdrawnObject 1784
 | ExternalItem)> 1785
<!ATTLIST RepositoryItem 1786
 identifier CDATA #REQUIRED 1787
 name CDATA #REQUIRED 1788
 repositoryURL CDATA #REQUIRED 1789
 objectType CDATA #REQUIRED 1790
 status CDATA #REQUIRED 1791
 stability CDATA #REQUIRED 1792
 description CDATA #IMPLIED > 1793
 1794
<!ELEMENT ExtrinsicObject (#PCDATA) > 1795
<!ATTLIST ExtrinsicObject 1796
 byteEncoding CDATA "Base64" > 1797
 1798
<!ELEMENT WithdrawnObject EMPTY > 1799
 1800
<!ELEMENT ExternalItem EMPTY > 1801
 1802

ebXML Registry January 2001

ebXML Registry Services Specification Page 59

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 1803

Semantic Rules 1804

1. If the RecursiveOption element is not present , then set Limit=0. If the 1805
RecursiveOption element is present, interpret its depthLimit attribute as an 1806
integer literal. If the depthLimit attribute is not present, then set Limit = -1. A 1807
Limit of 0 means that no recursion occurs. A Limit of -1 means that recursion 1808
occurs indefinitely. If a depthLimit value is present, but it cannot be 1809
interpreted as a positive integer, then stop execution and raise the exception: 1810
invalid depth limit; otherwise, set Limit=N, where N is that positive integer. A 1811
Limit of N means that exactly N recursive steps will be executed unless the 1812
process terminates prior to that limit. 1813

2. Set Depth=0. Let Result denote the set of RepositoryItem elements to be 1814
returned as part of the GetRepositoryItemResult. Initially Result is empty. 1815
Semantic rules 4 through 10 determine the content of Result. 1816

3. If the WithShortDescription element is present, then set WSD="yes"; 1817
otherwise, set WSD="no". 1818

4. Execute the RegistryEntryQuery according to the Semantic Rules specified in 1819
section 8.2.2, and let R be the result set of identifiers for registry entry 1820
instances. Let S be the set of status elements returned in the StatusResult. If 1821
any status element in S is an exception condition, then stop execution and 1822
return the same StatusResult element in the GetRepositoryItemResult. 1823

5. Execute Semantic Rules 6 and 7 with X as a set of registry references 1824
derived from R. After execution of these rules, if Depth is now equal to Limit, 1825
then return the content of Result as the set of RepositoryItem elements in the 1826
GetRepositoryItemResult element; otherwise, continue with Semantic Rule 8. 1827

6. Let X be a set of RegistryEntry instances. For each registry entry E in X, do 1828
the following: 1829

a) If E.repositoryURL references a repository item in this registry/repository, 1830
then create a new RepositoryItem element, with values for its attributes 1831
derived as specified in Semantic Rule 7. 1832

1) If E.objectType="ClassificationScheme", then put the referenced 1833
ClassificationScheme DTD as the subelement of this 1834
RepositoryItem. [NOTE: Requires DTD specification!] 1835

2) If E.objectType="RegistryPackage", then put the referenced 1836
RegistryPackage DTD as the subelement of this RepositoryItem. 1837
[NOTE: Requires DTD specification!] 1838

3) Otherwise, i.e., if the object referenced by E has an unknown 1839
internal structure, then put the content of the repository item as the 1840
#PCDATA of a new ExtrinsicObject subelement of this 1841
RepositoryItem. 1842

ebXML Registry January 2001

ebXML Registry Services Specification Page 60

Copyright © ebXML 2000 & 2001. All Rights Reserved.

b) If E.objectURL references a registered object in some other 1843
registry/repository, then create a new RepositoryItem element, with values 1844
for its attributes derived as specified in Semantic Rule 7, and create a new 1845
ExternalItem element as the subelement of this RepositoryItem. 1846

c) If E.objectURL is void, i.e. the object it would have referenced has been 1847
withdrawn, then create a new RepositoryItem element, with values for its 1848
attributes derived as specified in Semantic Rule 7, and create a new 1849
WithdrawnObject element as the subelement of this RepositoryItem. 1850

7. Let E be a registry entry and let RO be the RepositoryItem element created in 1851
Semantic Rule 6. Set the attributes of RO to the values derived from the 1852
corresponding attributes of E. If WSD="yes", include the value of the 1853
description attribute; otherwise, do not include it. Insert this new 1854
RepositoryItem element into the Result set. 1855

8. Let R be defined as in Semantic Rule 4. Execute Semantic Rule 9 with Y as 1856
the set of RegistryEntry instances referenced by R. Then continue with 1857
Semantic rule 10. 1858

9. Let Y be a set of references to RegistryEntry instances. Let NextLevel be an 1859
empty set of RegistryEntry instances. For each registry entry E in Y, and for 1860
each AssociationRole A of the RecursiveAssociationOption, do the following: 1861

a) Let Z be the set of target items E' linked to E under association instances 1862
having E as the source object, E' as the target object, and A as the 1863
AssociationType. 1864

b) Add the elements of Z to NextLevel. 1865

10. Let X be the set of new registry entries that are in NextLevel but are not yet 1866
represented in the Result set. 1867

Case: 1868

a) If X is empty, then return the content of Result as the set of 1869
RepositoryItem elements in the GetRepositoryItemResult element. 1870

b) If X is not empty, then execute Semantic Rules 6 and 7 with X as the input 1871
set. When finished, add the elements of X to Y and set Depth=Depth+1. If 1872
Depth is now equal to Limit, then return the content of Result as the set of 1873
RepositoryItem elements in the GetRepositoryItemResult element; 1874
otherwise, repeat Semantic Rules 9 and 10 with the new set Y of registry 1875
entries. 1876

11. If any exception, warning , or other status condition results during the 1877
execution of the above, then return appropriate status elements as the 1878
StatusResult of the GetRepositoryItemResult element created in Semantic 1879
Rule 5 or Semantic Rule 10. 1880

 1881

ebXML Registry January 2001

ebXML Registry Services Specification Page 61

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Examples 1882

A registry client has found a registry entry for a core-component item. The item's 1883
URN identity is "urn:ebxml:cc:goodthing". But "goodthing" is a composite item 1884
that uses many other registered items. The client desires the collection of all 1885
items needed for a complete implementation of "goodthing". The following query 1886
returns an XML document that is a collection of all needed items. 1887

 1888
 <GetRepositoryItem> 1889
 <RegistryEntryQuery> 1890
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10 1891
 ID EQ "urn:ebxml:cc:goodthing" 1892
 </RegistryEntryFilter> 1893
 </RegistryEntryQuery> 1894
 <RecursiveAssociationOption> 1895
 <AssociationRole role="Uses" /> 1896
 <AssociationRole role="ValidatesTo" /> 1897
 </RecursiveAssociationOption> 1898
 </GetRepositoryItem> 1899

 1900

A registry client has found a reference to a core-component routine 1901
("urn:ebxml:cc:rtn:nice87") that implements a given business process. The client 1902
knows that all routines have a required association to its defining UML 1903
specification. The following query returns both the routine and its UML 1904
specification as a collection of two items in a single XML document. 1905

 1906
 <GetRepositoryItem> 1907
 <RegistryEntryQuery> 1908
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10 1909
 ID EQ "urn:ebxml:cc:rtn:nice87" 1910
 </RegistryEntryFilter> 1911
 </RegistryEntryQuery> 1912
 <RecursiveAssociationOption depthLimit="1" > 1913
 <AssociationRole role="ValidatesTo" /> 1914
 </RecursiveAssociationOption> 1915
 </GetRepositoryItem> 1916

 1917

A user has been told that the 1997 version of the North American Industry 1918
Classification System (NAICS) is stored in the NIST registry with URN identifier 1919
"urn:nist:cs:naics-1997". The following query would retrieve the complete 1920
classification scheme, with all 1810 nodes, as an XML document that validates to 1921
a classification scheme DTD. 1922

 1923
 <GetRepositoryItem> 1924
 <RegistryEntryQuery> 1925
 <RegistryEntryFilter> -- code by Clause, Section 8.2.10 1926

ebXML Registry January 2001

ebXML Registry Services Specification Page 62

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 ID EQ " urn:nist:cs:naics-1997" 1927
 </RegistryEntryFilter> 1928
 </RegistryEntryQuery> 1929
 </GetRepositoryItem> 1930

 1931

Note: The GetRepositoryItemResult would include a single RepositoryItem that 1932
consists of the ClassificationScheme document with content: 1933
ftp://xsun.sdct.itl.nist.gov/regrep/scheme/naics.txt 1934

1935

ebXML Registry January 2001

ebXML Registry Services Specification Page 63

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.9 Registry Filters 1935

Purpose 1936

To identify a subset of the set of all persistent instances of a given registry class. 1937

Definition 1938
 1939
<!ELEMENT ObjectFilter (Clause)> 1940
 1941
<!ELEMENT RegistryEntryFilter (Clause)> 1942
 1943
<!ELEMENT IntrinsicObjectFilter (Clause)> 1944
 1945
<!ELEMENT ExtrinsicObjectFilter (Clause)> 1946
 1947
<!ELEMENT PackageFilter (Clause)> 1948
 1949
<!ELEMENT OrganizationFilter (Clause)> 1950
 1951
<!ELEMENT ContactFilter (Clause)> 1952
 1953
<!ELEMENT ClassificationNodeFilter (Clause)> 1954
 1955
<!ELEMENT AssociationFilter (Clause)> 1956
 1957
<!ELEMENT ClassificationFilter (Clause)> 1958
 1959
<!ELEMENT ExternalLinkFilter (Clause)> 1960
 1961
<!ELEMENT AuditableEventFilter (Clause)> 1962
 1963
<!ELEMENT UserFilter (Clause)> 1964

 1965

Semantic Rules 1966

1. The Clause element is defined in section 8.2.10, Clause. 1967

2. For every ObjectFilter XML element, the leftargument attribute of any 1968
containing SimpleClause shall identify a public attribute of the Object UML 1969
class defined in [RIM]. If not, raise exception: object attribute error. The 1970
ObjectFilter returns a set of identifiers for Object instances whose attribute 1971
values evaluate to True for the Clause predicate. 1972

3. For every RegistryEntryFilter XML element, the leftargument attribute of any 1973
containing SimpleClause shall identify a public attribute of the RegistryEntry 1974
UML class defined in [RIM]. 1975

ebXML Registry January 2001

ebXML Registry Services Specification Page 64

Copyright © ebXML 2000 & 2001. All Rights Reserved.

If not, raise exception: registry entry attribute error. The RegistryEntryFilter 1976
returns a set of identifiers for RegistryEntry instances whose attribute values 1977
evaluate to True for the Clause predicate. 1978

4. For every IntrinsicObjectFilter XML element, the leftargument attribute of any 1979
containing SimpleClause shall identify a public attribute of the IntrinsicObject 1980
UML class defined in [RIM]. If not, raise exception: intrinsic object attribute 1981
error. The IntrinsicObjectFilter returns a set of identifiers for IntrinsicObject 1982
instances whose attribute values evaluate to True for the Clause predicate. 1983

5. For every ExtrinsicObjectFilter XML element, the leftargument attribute of any 1984
containing SimpleClause shall identify a public attribute of the ExtrinsicObject 1985
UML class defined in [RIM]. If not, raise exception: extrinsic object attribute 1986
error. The ExtrinsicObjectFilter returns a set of identifiers for ExtrinsicObject 1987
instances whose attribute values evaluate to True for the Clause predicate. 1988

6. For every PackageFilter XML element, the leftargument attribute of any 1989
containing SimpleClause shall identify a public attribute of the Package UML 1990
class defined in [RIM]. If not, raise exception: package attribute error. The 1991
PackageFilter returns a set of identifiers for Package instances whose 1992
attribute values evaluate to True for the Clause predicate. 1993

7. For every OrganizationFilter XML element, the leftargument attribute of any 1994
containing SimpleClause shall identify a public attribute of the Organization or 1995
PostalAddress UML classes defined in [RIM]. If not, raise exception: 1996
organization attribute error. The OrganizationFilter returns a set of identifiers 1997
for Organization instances whose attribute values evaluate to True for the 1998
Clause predicate. 1999

8. For every ContactFilter XML element, the leftargument attribute of any 2000
containing SimpleClause shall identify a public attribute of the Contact or 2001
PostalAddress UML class defined in [RIM]. If not, raise exception: contact 2002
attribute error. The ContactFilter returns a set of identifiers for Contact 2003
instances whose attribute values evaluate to True for the Clause predicate. 2004

9. For every ClassificationNodeFilter XML element, the leftargument attribute of 2005
any containing SimpleClause shall identify a public attribute of the 2006
ClassificationNode UML class defined in [RIM]. If not, raise exception: 2007
classification node attribute error. The ClassificationNodeFilter returns a set of 2008
identifiers for ClassificationNode instances whose attribute values evaluate to 2009
True for the Clause predicate. 2010

10. For every AssociationFilter XML element, the leftargument attribute of any 2011
containing SimpleClause shall identify a public attribute of the Association 2012
UML class defined in [RIM]. If not, raise exception: association attribute error. 2013
The AssociationFilter returns a set of identifiers for Association instances 2014
whose attribute values evaluate to True for the Clause predicate. 2015

ebXML Registry January 2001

ebXML Registry Services Specification Page 65

Copyright © ebXML 2000 & 2001. All Rights Reserved.

11. For every ClassificationFilter XML element, the leftargument attribute of any 2016
containing SimpleClause shall identify a public attribute of the Classification 2017
UML class defined in [RIM]. If not, raise exception: classification attribute 2018
error. The ClassificationFilter returns a set of identifiers for Classification 2019
instances whose attribute values evaluate to True for the Clause predicate. 2020

12. For every ExternalLinkFilter XML element, the leftargument attribute of any 2021
containing SimpleClause shall identify a public attribute of the ExternalLink 2022
UML class defined in [RIM]. If not, raise exception: external link attribute error. 2023
The ExternalLinkFilter returns a set of identifiers for ExternalLink instances 2024
whose attribute values evaluate to True for the Clause predicate. 2025

13. For every AuditableEventFilter XML element, the leftargument attribute of any 2026
containing SimpleClause shall identify a public attribute of the AuditableEvent 2027
UML class defined in [RIM]. If not, raise exception: auditable event attribute 2028
error. The AuditableEventFilter returns a set of identifiers for AuditableEvent 2029
instances whose attribute values evaluate to True for the Clause predicate. 2030

14. For every UserFilter XML element, the leftargument attribute of any 2031
containing SimpleClause shall identify a public attribute of the User UML 2032
class defined in [RIM]. If not, raise exception: auditable identity attribute error. 2033
The UserFilter returns a set of identifiers for User instances whose attribute 2034
values evaluate to True for the Clause predicate. 2035

 2036
2037

ebXML Registry January 2001

ebXML Registry Services Specification Page 66

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.2.10 XML Clause Constraint Representation 2037

Purpose 2038

The simple XML FilterQuery utilizes a formal XML structure based on Predicate 2039
Clauses. Predicate Clauses are utilized to formally define the constraint 2040
mechanism, and are referred to simply as Clauses in this specification. 2041

Conceptual UML Diagram 2042

The following is a conceptual diagram outlining the Clause base structure. It is 2043
expressed in UML for visual depiction. 2044

 2045

RationalClause
<<XMLElement>>

BooleanClause
<<XMLElement>>

IntClause
<<XMLElement>>

FloatClause
<<XMLElement>>

SimpleClause
<<XMLElement>>

CompoundClause
<<XMLElement>>

Clause
<<XMLElement>>

2..n2..n

StringClause
<<XMLElement>>

 2046

 2047

 2048

 2049

 2050

ebXML Registry January 2001

ebXML Registry Services Specification Page 67

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Semantic Rules 2051

Predicates and Arguments are combined into a "LeftArgument - Predicate - 2052
RightArgument" format to form a Clause. There are two types of Clauses: 2053
SimpleClauses and CompoundClauses. 2054

SimpleClauses 2055

A SimpleClause always defines the left argument as a text string, sometimes 2056
referred to as the Subject of the Clause. SimpleClause itself is incomplete 2057
(abstract) and must be extended. SimpleClause is extended to support 2058
BooleanClause, StringClause, and RationalClause (abstract). 2059

BooleanClause implicitly defines the predicate as ‘equal to’, with the right 2060
argument as a boolean. StringClause defines the predicate as an enumerated 2061
attribute of appropriate string-compare operations and a right argument as the 2062
element’s text data. Rational number support is provided through a common 2063
RationalClause providing an enumeration of appropriate rational number 2064
compare operations, which is further extended to IntClause and FloatClause, 2065
each with appropriate signatures for the right argument. 2066

CompoundClauses 2067

A CompoundClause contains two or more Clauses (Simple or Compound) and a 2068
connective predicate. This provides for arbitrarily complex Clauses to be formed. 2069

 2070

Definition 2071

 2072
<!ELEMENT Clause (SimpleClause | CompoundClause)> 2073
 2074
<!ELEMENT Simpleclause 2075
 (BooleanClause | RationalClause | StringClause)> 2076
<!ATTLIST SimpleClause leftargument CDATA #REQUIRED > 2077
 2078
<!ELEMENT CompoundClause (Clause, Clause+)> 2079
<!ATTLIST CompoundClause connectivepredicate (And | Or) #REQUIRED> 2080
 2081
<!ELEMENT BooleanClause EMPTY > 2082
<!ATTLIST BooleanClause booleanpredicate (True | False) #REQUIRED> 2083
 2084
<!ELEMENT RationalClause (IntClause | FloatClause)> 2085
<!ATTLIST RationalClause logicalpredicate 2086
 (LE | LT | GE | GT | EQ | NE) #REQUIRED > 2087
 2088
<!ELEMENT IntClause (#PCDATA) 2089
<!ATTLIST IntClause e-dtype NMTOKEN #FIXED 'int' > 2090
 2091
<!ELEMENT FloatClause (#PCDATA)> 2092
<!ATTLIST FloatClause e-dtype NMTOKEN #FIXED 'float' > 2093
 2094
<!ELEMENT StringClause (#PCDATA)> 2095

ebXML Registry January 2001

ebXML Registry Services Specification Page 68

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!ATTLIST StringClause stringpredicate 2096
 (contains | -contains | startswith | 2097
 -startswith | endswith | -endswith) #REQUIRED > 2098

 2099

Examples 2100

Simple BooleanClause: "Smoker" = True 2101

 2102
<?xml version="1.0" encoding="UTF-8"?> 2103
<!DOCTYPE Clause SYSTEM "Clause.dtd" > 2104
<Clause> 2105
 <SimpleClause leftargument="Smoker"> 2106
 <BooleanClause booleanpredicate="True"/> 2107
 </SimpleClause> 2108
</Clause> 2109
 2110

Simple StringClause: "Smoker" contains "mo" 2111

 2112
<?xml version="1.0" encoding="UTF-8"?> 2113
<!DOCTYPE Clause SYSTEM "Clause.dtd" > 2114
<Clause> 2115
 <SimpleClause leftargument="Smoker"> 2116
 <StringClause stringcomparepredicate="contains"> 2117
 mo 2118
 </StringClause> 2119
 </SimpleClause> 2120
</Clause> 2121

 2122

Simple IntClause: "Age" >= 7 2123

 2124
<?xml version="1.0" encoding="UTF-8"?> 2125
<!DOCTYPE Clause SYSTEM "Clause.dtd" > 2126
<Clause> 2127
 <SimpleClause leftargument="Age"> 2128
 <RationalClause logicalpredicate="GE"> 2129
 <IntClause e-dtype="int">7</IntClause> 2130
 </RationalClause> 2131
 </SimpleClause> 2132
</Clause> 2133
 2134

Simple FloatClause: "Size" = 4.3 2135

 2136
<?xml version="1.0" encoding="UTF-8"?> 2137
<!DOCTYPE Clause SYSTEM "Clause.dtd" > 2138
<Clause> 2139
 <SimpleClause leftargument="Size"> 2140
 <RationalClause logicalpredicate="E"> 2141

ebXML Registry January 2001

ebXML Registry Services Specification Page 69

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 <FloatClause e-dtype="float">4.3</FloatClause> 2142
 </RationalClause> 2143
 </SimpleClause> 2144
</Clause> 2145

 2146

Compound with two Simples (("Smoker" = False)AND("Age" =< 45)) 2147

 2148
<?xml version="1.0" encoding="UTF-8"?> 2149
<!DOCTYPE Clause SYSTEM "Clause.dtd" > 2150
<Clause> 2151
 <CompoundClause connectivepredicate="And"> 2152
 <Clause> 2153
 <SimpleClause leftargument="Smoker"> 2154
 <BooleanClause booleanpredicate="False"/> 2155
 </SimpleClause> 2156
 </Clause> 2157
 <Clause> 2158
 <SimpleClause leftargument="Age"> 2159
 <RationalClause logicalpredicate="EL"> 2160
 <IntClause e-dtype="int">45</IntClause> 2161
 </RationalClause> 2162
 </SimpleClause> 2163
 </Clause> 2164
 </CompoundClause> 2165
</Clause> 2166

 2167

Coumpound with one Simple and one Compound 2168

(("Smoker" = False)And(("Age" =< 45)Or("American"=True))) 2169

 2170
<?xml version="1.0" encoding="UTF-8"?> 2171
<!DOCTYPE Clause SYSTEM "Clause.dtd" > 2172
<Clause> 2173
 <CompoundClause connectivepredicate="And"> 2174
 <Clause> 2175
 <SimpleClause leftargument="Smoker"> 2176
 <BooleanClause booleanpredicate="False"/> 2177
 </SimpleClause> 2178
 </Clause> 2179
 <Clause> 2180
 <CompoundClause connectivepredicate="Or"> 2181
 <Clause> 2182
 <SimpleClause leftargument="Age"> 2183
 <RationalClause logicalpredicate="EL"> 2184
 <IntClause e-dtype="int">45</IntClause> 2185
 </RationalClause> 2186
 </SimpleClause> 2187
 </Clause> 2188
 <Clause> 2189
 <SimpleClause leftargument="American"> 2190

ebXML Registry January 2001

ebXML Registry Services Specification Page 70

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 <BooleanClause booleanpredicate="True"/> 2191
 </SimpleClause> 2192
 </Clause> 2193
 </CompoundClause> 2194
 </Clause> 2195
 </CompoundClause> 2196
</Clause> 2197

8.3 SQL Query Support 2198

The Registry may optionally support an SQL based query capability that is 2199
designed for Registry clients that demand more complex query capability. The 2200
optional SQLQuery element in the AdhocQueryRequest allows a client to submit 2201
complex SQL queries using a declarative query language. 2202

The syntax for the SQLQuery of the Registry is defined by a stylized use of a 2203
proper subset of the “SELECT” statement of Entry level SQL defined by ISO/IEC 2204
9075:1992, Database Language SQL [SQL], extended to include <sql 2205
invoked routines> (also known as stored procedures) as specified in 2206

ISO/IEC 9075-4 [SQL-PSM] and pre-defined routines defined in template form in 2207
appendix C.3. The exact syntax of the Registry query language is defined by the 2208
BNF grammar in C.1. 2209

Note that the use of a subset of SQL syntax for SQLQuery does not imply a 2210
requirement to use relational databases in a Registry implementation. 2211

8.3.1 SQL Query Syntax Binding To [RIM] 2212

SQL Queries are defined based upon the query syntax in in appendix C.1 and a 2213
fixed relational schema defined in appendix C.3. The relational schema is an 2214
algorithmic binding to [RIM] as described in the following sections. 2215

8.3.1.1 Interface and Class Binding 2216

A subset of the Interface and class names defined in [RIM] map to table names 2217
that may be queried by an SQL query. Appendix C.3 defines the names of the 2218
RIM interfaces and classes that may be queries by an SQL query. 2219

The algorithm used to define the binding of [RIM] classes to table definitions in 2220
appendix C.3 is as follows: 2221

?? Only those classes and interfaces that have concrete instances are 2222
mapped to relational tables. This results in intermediate interfaces in the 2223
inheritance hierarchy, such as Object and IntrinsicObject to not map to 2224
SQL tables. An exception to this rule is RegistryEntry as defined next. 2225

ebXML Registry January 2001

ebXML Registry Services Specification Page 71

Copyright © ebXML 2000 & 2001. All Rights Reserved.

?? A special view called RegistryEntry is defined to allow SQL queries to be 2226
made against RegistryEntry instances. This is the only interface defined in 2227
[RIM] that does not have concrete instances but is queryable by SQL 2228
queries. 2229

?? The names of relational tables are the same as the corresponding [RIM] 2230
class or interface name. However, the name binding is case insensitive. 2231

?? Each [RIM] class or interface that maps to a table in appendix C.3 2232
includes column definitions in appendix C.3 where the column definitions 2233
are based on a subset of attributes defined for that class or interface in 2234
[RIM]. The attributes that map to columns include the inherited attributes 2235
for the [RIM] class or interface. Comments in appendix C.3 indicate which 2236
ancestor class or interface contributed which column definitions. 2237

An SQLQuery against a table not defined in appendix C.3 may result in an 2238
ebXMLError message with an InvalidQueryException. 2239

The algorithm for mapping of attributes to column definitions will be described in 2240
following sections. 2241

8.3.1.2 Accessor Method To Attribute Binding 2242

Most of the [RIM] interfaces methods are simple get methods that map directly to 2243
attributes. For example the getName method on Object maps to a name attribute 2244
of type String. Each get method in [RIM] defines the exact attribute name that it 2245
maps to in the interface definitions in [RIM]. 2246

8.3.1.3 Primitive Attributes Binding 2247

Attributes defined by [RIM] that are of primitive types (e.g. String) may be used in 2248
the same way as column names in SQL. Again the exact attribute names are 2249
defined in the interface definitions in [RIM]. Note that while names are in mixed 2250
case, SQL-92 is case insensitive. It is therefore valid for a query to contain 2251
attribute names that do not exactly match the case defined in [RIM]. 2252

8.3.1.4 Reference Attribute Binding 2253

A few of the [RIM] interface methods return references to instances of interfaces 2254
or classes defined by [RIM]. For example, the getAccessControlPolicy method of 2255
the Object class returns a reference to an instance of an AccessControlPolicy 2256
object. 2257

In such cases the reference maps to the id attribute for the referenced object. 2258

The name of the resulting column is the same as the attribute name in [RIM] as 2259
defined by 8.3.1.3. The data type for the column is UUID as defined in appendix 2260
C.3. 2261

ebXML Registry January 2001

ebXML Registry Services Specification Page 72

Copyright © ebXML 2000 & 2001. All Rights Reserved.

When a reference attribute value holds a null reference it maps to a null value in 2262
the SQL binding which may be tested with the <null specification> as defined by 2263
[SQL]. 2264

Reference attribute binding is a special case of a primitive attribute mapping. 2265

8.3.1.5 Complex Attribute Binding 2266

A few of the [RIM] interfaces define attributes that are not primitive types. Instead 2267
they are of a complex type as defined by an entity class in [RIM]. Examples 2268
include attributes of type TelephoneNumber, Contact, PersonName etc. in 2269
interface Organization and class Contact. 2270

The SQL query schema algorithmically maps such complex attributes as multiple 2271
primitive attributes within the parent table. The mapping simply flattens out the 2272
entity class attributes within the parent table. The attribute name for the flattened 2273
attributes are composed of a concatenation of attribute names in the refernce 2274
chain. For example Organization has a contact attribute of type Contact. Contact 2275
has an address attribute of type PostalAddress. PostalAddress has a String 2276
attribute named city. This city attribute will be named contact_address_city. 2277

8.3.1.6 Collection Attribute Binding 2278

A few of the [RIM] interface methods return collection of references to instances 2279
of interfaces or classes defined by [RIM]. For example, the getPackages method 2280
of the ManagedObject class returns a Collection of references to instances of 2281
Packages that the object is a member of. 2282

Such collection attributes in [RIM] classes have been mapped to stored 2283
procedures in appendix C.3 such that these stored procedures return a collection 2284
of id attribute values. The returned value of these stored procedures can be 2285

treated as the result of a table sub-query in SQL. 2286

These stored procedures may be used SQL IN clause to test for membership of 2287
an object in such collections of references. 2288

8.3.2 Semantic Constraints On Query Syntax 2289

This section defines simplifying constraints on the query syntax that cannot be 2290
expressed in the BNF for the query syntax. These constraints must be applied in 2291
the semantic analysis of the query. 2292

1. Class names and attribute names must be processed in a case insensitive 2293
manner. 2294

 2295

2. The syntax used for stored procedure invocation must be consistent with 2296
the syntax of an SQL procedure invocation as specified by ISO/IEC 9075-2297
4 [SQL/PSM]. 2298

ebXML Registry January 2001

ebXML Registry Services Specification Page 73

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 2299

The SQL select column specified must always be t.id for this version of the 2300

specification, where t is a table reference in the FROM clause. 2301

8.3.3 SQL Query Results 2302

The results of an SQL query is always an ObjectRefList as defined by the 2303
AdHocQueryResponse in 8.3.12. This means the result of an SQL query is 2304
always a collection of references to instances of a sub-class of the Object 2305
interface in [RIM]. This is reflected in a semantic constraint that requires that the 2306
SQL select column specified must always be an id column in a table in appendix 2307
C.3 for this version of the specification. 2308

8.3.4 Simple Metadata Based Queries 2309

The simplest form of an SQL query is based upon metadata attributes specified 2310
for a single class within [RIM]. This section gives some examples of simple 2311
metadata based queries. 2312

For example, to get the collection of ExtrinsicObjects whose name contains the 2313
word ‘Acme’ and that have a version greater than 1.3, the following query 2314
predicates must be supported: 2315

 2316
SELECT id FROM ExtrinsicObject WHERE name LIKE ‘%Acme%’ AND 2317
 majorVersion >= 1 AND 2318
 (majorVersion >= 2 OR minorVersion > 3); 2319

Note that the query syntax allows for conjugation of simpler predicates into more 2320
complex queries as shown in the simple example above. 2321

8.3.5 RegistryEntry Queries 2322

Given the central role played by the RegistryEntry interface in RIM, the schema 2323
for the SQL query defines a special view called RegistryEntry that allows doing a 2324
polymorphic query against all RegistryEntry instances regardless of their actual 2325
concrete type or table name. 2326

The following example is the same as section 8.3.1.2 except that it is applied 2327
against all RegistryEntry instances rather than just ExtrinsicObject instances. The 2328
result set will include id for all qualifying RegistryEntry instances whose name 2329
contains the word ‘Acme’ and that have a version greater than 1.3. 2330
SELECT id FROM RegistryEntry WHERE name LIKE ‘%Acme%’ AND 2331
 majorVersion >= 1 AND 2332
 (majorVersion >= 2 OR re.minorVersion > 3); 2333

ebXML Registry January 2001

ebXML Registry Services Specification Page 74

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.3.6 Classification Queries 2334

This section describes the various classification related queries that must be 2335
supported. 2336

8.3.6.1 Identifying ClassificationNodes 2337

Like all objects in [RIM], ClassificationNodes are identified by their ID. However, 2338
they may also be identified as a path attribute that specifies an xpath expression 2339
from a root classification node to the specified classification node in the XML 2340
document that would represent the ClassificationNode tree including the said 2341
ClassificationNode. 2342

8.3.6.2 Getting Root Classification Nodes 2343

To get the collection of root ClassificationNodes the following query predicate 2344
must be supported: 2345
SELECT cn.id FROM ClassificationNode cn WHERE parent IS NULL 2346

The above query returns all ClassificationNodes that have their parent attribute 2347
set to null. Note that the above query may also specify a predicate on the name if 2348
a specific root ClassificationNode is desired. 2349

8.3.6.3 Getting Children of Specified ClassificationNode 2350

To get the children of a ClassificationNode given the ID of that node the following 2351
style of query must be supported: 2352
SELECT cn.id FROM ClassificationNode cn WHERE parent = <id> 2353

The above query returns all ClassificationNodes that have the node specified by 2354
ID as their parent attribute. 2355

8.3.6.4 Getting Objects Classified By a ClassificationNode 2356

To get the collection of ExtrinsicObjects classified by specified 2357
ClassificationNodes the following style of query must be supported: 2358
SELECT id FROM ExtrinsicObject 2359
WHERE 2360
 id IN (SELECT classifiedObject FROM Classification 2361
 WHERE 2362
 classificationNode IN (SELECT id FROM ClassificationNode 2363
 WHERE path = ‘/Geography/Asia/Japan’)) 2364
 AND 2365
 id IN (SELECT classifiedObject FROM Classification 2366
 WHERE 2367
 classificationNode IN (SELECT id FROM ClassificationNode 2368
 WHERE path = ‘/Industry/Automotive’)) 2369

The above query gets the collection of ExtrinsicObjects that are classified by the 2370
Automotive Industry and the Japan Geography. Note that according to the 2371
semantics defined for GetClassifiedObjectsRequest, the query will also contain 2372
any objects that are classified by descendents of the specified 2373
ClassificationNodes. 2374

ebXML Registry January 2001

ebXML Registry Services Specification Page 75

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.3.6.5 Getting ClassificationNodes That Classify an Object 2375

To get the collection of ClassificationNodes that classify a specified Object the 2376
following style of query must be supported: 2377
SELECT id FROM ClassificationNode 2378
 WHERE id IN (RegistryEntry_classificationNodes(<id>)) 2379

8.3.7 Association Queries 2380

This section describes the various Association related queries that must be 2381
supported. 2382

8.3.7.1 Getting All Association With Specified Object As Its Source 2383

To get the collection of Associations that have the specified Object as its source, 2384
the following query must be supported: 2385
SELECT id FROM Association WHERE sourceObject = <id> 2386

8.3.7.2 Getting All Association With Specified Object As Its Target 2387

To get the collection of Associations that have the specified Object as its target, 2388
the following query must be supported: 2389
SELECT id FROM Association WHERE targetObject = <id> 2390

8.3.7.3 Getting Associated Objects Based On Association Attributes 2391

To get the collection of Associations that have specified Association attributes, 2392
the following queries must be supported: 2393

Select Associations that have the specified name. 2394
SELECT id FROM Association WHERE name = <name> 2395

Select Associations that have the specified source role name. 2396
SELECT id FROM Association WHERE sourceRole = <roleName> 2397

Select Associations that have the specified target role name. 2398
SELECT id FROM Association WHERE targetRole = <roleName> 2399

Select Associations that have the specified association type, where association 2400
type is a string containing the corresponding field name described in [RIM]. 2401
SELECT id FROM Association WHERE 2402
 associationType = <associationType> 2403

8.3.7.4 Complex Association Queries 2404

The various forms of Association queries may be combined into complex 2405
predicates. The following query selects Associations from an object with a 2406
specified id, that have the sourceRole “buysFrom” and targetRole “sellsTo”: 2407
SELECT id FROM Association WHERE 2408
 sourceObject = <id> AND 2409
 sourceRole = ‘buysFrom’ AND 2410
 sourceRole = ‘sellsTo’ 2411

ebXML Registry January 2001

ebXML Registry Services Specification Page 76

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.3.8 Package Queries 2412

To find all Packages that a specified ExtrinsicObject belongs to, the following 2413
query is specified: 2414
SELECT id FROM Package WHERE id IN (RegistryEntry_packages(<id>) 2415

8.3.8.1 Complex Package Queries 2416

The following query gets all Packages that a specified object belongs to, that are 2417
not deprecated and where name contains "RosettaNet." 2418
SELECT id FROM Package WHERE 2419
 id IN (RegistryEntry_packages(<id>)) AND 2420
 name LIKE ‘%RosettaNet%’ AND 2421
 status <> ‘DEPRECATED’ 2422

8.3.9 ExternalLink Queries 2423

To find all ExternalLinks that a specified ExtrinsicObject is linked to, the following 2424
query is specified: 2425
SELECT id From ExternalLink WHERE id IN (RegistryEntry_externalLinks(<id>) 2426

To find all ExtrinsicObjects that are linked by a specified ExternalLink, the 2427
following query is specified: 2428
SELECT id From ExtrinsicObject WHERE id IN (RegistryEntry_linkedObjects(<id>) 2429

8.3.9.1 Complex ExternalLink Queries 2430

The following query gets all ExternalLinks that a specified ExtrinsicObject 2431
belongs to, that contain the word ‘legal’ in their description and have a URL for 2432
their externalURI. 2433
SELECT id FROM ExternalLink WHERE 2434
 id IN (RegistryEntry_externalLinks(<id>)) AND 2435
 description LIKE ‘%legal%’ AND 2436
 externalURI LIKE ‘%http://%’ 2437

8.3.10 Audit Trail Queries 2438

To get the complete collection of AuditableEvent objects for a specified 2439
ManagedObject, the following query is specified: 2440
SELECT id FROM AuditableEvent WHERE registryEntry = <id> 2441

8.3.11 Content Based Ad Hoc Queries 2442

 2443

The Registry SQL query capability supports the ability to search for content 2444
based not only on metadata that catalogs the content but also the data contained 2445
within the content itself. For example it is possible for a client to submit a query 2446
that searches for all Collaboration Party Profiles that define a role named “seller” 2447
within a RoleName element in the CPP document itself. 2448

Currently content-based query capability is restricted to XML content. 2449

ebXML Registry January 2001

ebXML Registry Services Specification Page 77

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.3.11.1 Automatic Classification of XML Content 2450

Content-based queries are indirectly supported through the existing classification 2451
mechanism supported by the Registry. 2452

A submitting organization may define logical indexes on any XML schema or 2453
DTD when it is submitted. An instance of such a logical index defines a link 2454
between a specific attribute or element node in an XML document tree and a 2455
ClassificationNode in a classification scheme within the registry. 2456

The registry utilizes this index to automatically classify documents that are 2457
instances of the schema at the time the document instance is submitted. Such 2458
documents are classified according to the data contained within the document 2459
itself. 2460

Such automatically classified content may subsequently be discovered by clients 2461
using the existing classification-based discovery mechanism of the Registry and 2462
the query facilities of the ObjectQueryManager. 2463

[Note]This approach is conceptually similar to the 2464
way databases support indexed retrieval. DBAs 2465
define indexes on tables in the schema. When 2466
data is added to the table, the data gets 2467
automatically indexed. 2468

8.3.11.2 Index Definition 2469

This section describes how the logical indexes are defined in the 2470
SubmittedObject element defined in the Registry DTD. The complete Registry 2471
DTD is specified in Appendix A.2. 2472

A SubmittedObject element for a schema or DTD may define a collection of 2473
ClassificationIndexes in a ClassificationIndexList optional element. The 2474
ClassificationIndexList is ignored if the content being submitted is not of the 2475
SCHEMA objectType. 2476

The ClassificationIndex element inherits the attributes of the base class Object in 2477
[RIM]. It then defines specialized attributes as follows: 2478

1. classificationNode: This attribute references a specific ClassificationNode 2479
by its ID. 2480

2. contentIdentifier: This attribute identifies a specific data element within the 2481
document instances of the schema using an XPATH path expression as 2482
defined by [XPT]. 2483

8.3.11.3 Example Of Index Definition 2484

To define an index that automatically classifies a CPP based upon the roles 2485
defined within its RoleName elements, the following index must be defined on the 2486
CPP schema or DTD: 2487

ebXML Registry January 2001

ebXML Registry Services Specification Page 78

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<ClassificationIndex 2488
 classificationNode=’id-for-role-classification-scheme’ 2489
 contentIdentifier=’/Role//RoleName’ 2490
/> 2491

8.3.11.4 Example of Automatic Classification 2492

Assume that a CPP is submitted that defines two roles as “seller” and “buyer." 2493
When the CPP is submitted it will automatically be classified by two 2494
ClassificationNodes named “buyer” and “seller” that are both children of the 2495
ClassificationNode (e.g. a node named Role) specified in the classificationNode 2496
attribute of the ClassificationIndex. Note that if either of the two 2497
ClassificationNodes named “buyer” and “seller” did not previously exist, the 2498
ObjectManager would automatically create these ClassificationNodes. 2499

 2500

8.3.12 Ad Hoc Query Request/Response 2501

A client submits an ad hoc query to the ObjectQueryManager by sending an 2502
AdhocQueryRequest. The AdhocQueryRequest contains a sub-element that 2503
defrines a query in one of the supported Registry query mechanisms. 2504

The ObjectQueryManager sends an AdhocQueryResponse either synchronously 2505
or asynchronously back to the client. The AdhocQueryResponse return a 2506
collection of objects whose element type is in the set of element types 2507
represented by the leaf nodes of the RegistryEntry hierarchy in [RIM]. 2508

 2509

Figure 15: Submit Ad Hoc Query Sequence Diagram 2510

ebXML Registry January 2001

ebXML Registry Services Specification Page 79

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 2511

Figure 16: Submit Ad Hoc Query Asynchronous Sequence Diagram 2512

For details on the schema for the business documents shown in this process 2513
refer to Appendix A.2. 2514

8.4 Content Retrieval 2515

A client retrieves content via the Registry by sending the GetContentRequest to 2516
the ObjectQueryManager. The GetContentRequest specifies a list of Object 2517
references for Objects that need to be retrieved. The ObjectQueryManager 2518
returns the specified content by sending a GetContentResponse message to the 2519
ObjectQueryManagerClient interface of the client. If there are no errors 2520
encountered, the GetContentResponse message includes the specified content 2521
as additional payloads within the message. In addition to the 2522
GetContentResponse payload, there is one additional payload for each content 2523
that was requested. If there are errors encountered, the GetContentResponse 2524
payload includes an ebXMLError and there are no additional content specific 2525
payloads. 2526

8.4.1 Retrieval of Registry Profile 2527

A special case of content retrieval is the retrieval of the RegistryProfile XML 2528
document. The RegistryProfile XML document is retrieved by specifying 2529

A special id named “RegistryProfileID” as the value of the id attribute for 2530

the ObjectRef element in GetContentRequest. 2531

ebXML Registry January 2001

ebXML Registry Services Specification Page 80

Copyright © ebXML 2000 & 2001. All Rights Reserved.

8.4.2 Identification Of Content Payloads 2532

Since the GetContentResponse message may include several repository items 2533
as additional payloads, it is necessary to have a way to identify each payload in 2534
the message. To facilitate this identification, the Registry must do the following: 2535

?? Use the ID for each RegistryEntry instance that describes the repository 2536
item as the DocumentLabel element in the DocumentReference for that 2537
object in the Manifest element of the ebXMLHeader. 2538

8.4.3 GetContentResponse Message Structure 2539

The following message fragment illustrates the structure of the 2540
GetContentResponse Message that is returning a Collection of CPPs as a result 2541
of a GetContentRequest that specified the IDs for the requested objects. Note 2542
that the ID for each object retrieved in the message as additional payloads is 2543
used as its DocumentLabel in the Manifest of the ebXMLHeader. 2544

 2545
… 2546
--7250537.978150567601.JavaMail.najmi.irian 2547
… 2548
<ebXMLHeader MessageType="Normal" Version="1.0"> 2549
 <Manifest> 2550
 <DocumentReference> 2551
 <DocumentLabel>GetContentsResponse</DocumentLabel> 2552
 <DocumentId>6835fb:e3be512ac8:-8000</DocumentId> 2553
 </DocumentReference> 2554
 <DocumentReference> 2555
 <DocumentLabel> ID for CPP content #1 </DocumentLabel> 2556
 <DocumentId>....</DocumentId> 2557
 </DocumentReference> 2558
 <DocumentReference> 2559
 <DocumentLabel> ID for CPP content #2 </DocumentLabel> 2560
 <DocumentId>… </DocumentId> 2561
 </DocumentReference> 2562
 </Manifest> 2563
 <Header> 2564
 … 2565
 </Header> 2566
--7250537.978150567601.JavaMail.najmi.irian 2567
Content-Type: application/xml 2568
Content-Description: GetContentsResponse 2569
Content-ID: 6835fb:e3be512ac8:-7ffc 2570
Content-Length: 97 2571
 2572
<?xml version="1.0" encoding="UTF-8"?> 2573
<GetContentsResponse /> 2574
 2575
--7250537.978150567601.JavaMail.najmi.irian 2576
Content-Type: application/xml 2577
Content-Description: ID for CPP content #1 2578
Content-ID: …. 2579
… 2580
<CPP> 2581
… 2582
</CPP> 2583
--7250537.978150567601.JavaMail.najmi.irian 2584
Content-Type: application/xml 2585
Content-Description: ID for CPP content #2 2586

ebXML Registry January 2001

ebXML Registry Services Specification Page 81

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Content-ID: …. 2587
… 2588
<CPP> 2589
… 2590
</CPP> 2591
--7250537.978150567601.JavaMail.najmi.irian-- 2592

 2593

8.5 Query And Retrieval: Typical Sequence 2594

The following diagram illustrates the use of both browse/drilldown and ad hoc 2595
queries followed by a retrieval of content that was selected by the queries. 2596

 2597

Figure 17: Typical Query and Retrieval Sequence 2598

9 Registry Security 2599

This chapter describes the security features of the ebXML Registry. It is assumed 2600
that the reader is familiar with the security related classes in the Registry 2601
information model as described in [RIM]. 2602

ebXML Registry January 2001

ebXML Registry Services Specification Page 82

Copyright © ebXML 2000 & 2001. All Rights Reserved.

In the current version of this specification, a minimalist approach has been 2603
specified for Registry security. The philosophy is that “Any known entity can 2604
publish content and anyone can view published content.” The Registry 2605
information model has been designed to allow more sophisticated security 2606
policies in future versions of this specification. 2607

9.1 Integrity of Registry Content 2608

It is assumed that most business registries do not have the resources to validate 2609
the veracity of the content submitted to them. The minimal integrity that the 2610
Registry must provide is to ensure that content submitted by a Submitting 2611
Organization (SO) is maintained in the Registry without any tampering either en-2612
route or within the Registry. Furthermore, the Registry must make it possible to 2613
identify the SO for any Registry content unambiguously. 2614

9.1.1 Message Payload Signature 2615

Integrity of Registry content requires that all submitted content must be signed by 2616
the Registry client as defined by [SEC]. The signature on the submitted content 2617
ensures that: 2618

?? The content has not been tampered with en-route or within the Registry. 2619

?? The content’s veracity can be ascertained by its association with a 2620
specific submitting organization 2621

9.2 Authentication 2622

The Registry must be able to authenticate the identity of the Principal associated 2623
with client requests. Authentication is required to identify the ownership of 2624
content as well as to identify what “privileges” a Principal can be assigned with 2625
respect to the specific objects in the Registry. 2626

The Registry must perform Authentication on a per request basis. From a 2627
security point of view, all messages are independent and there is no concept of a 2628
session encompassing multiple messages or conversations. Session support 2629
may be added as an optimization feature in future versions of this specification. 2630

The Registry must implement a credential-based authentication mechanism 2631
based on digital certificates and signatures. The Registry uses the certificate DN 2632
from the signature to authenticate the user. 2633

ebXML Registry January 2001

ebXML Registry Services Specification Page 83

Copyright © ebXML 2000 & 2001. All Rights Reserved.

9.2.1 Message Header Signature 2634

Message headers may be signed by the sending ebXML Messaging Service as 2635
defined by [SEC]. Since this specification is not yet finalized, this version does 2636
not require that the message header be signed. In the absence of a message 2637
header signature, the payload signature is used to authenticate the identity of the 2638
requesting client. 2639

9.3 Confidentiality 2640

9.3.1 On-the-wire Message Confidentiality 2641

It is suggested but not required that message payloads exchanged between 2642
clients and the Registry be encrypted during transmission. Payload encryption 2643
must abide by any restrictions set forth in [SEC]. 2644

9.3.2 Confidentiality of Registry Content 2645

In the current version of this specification, there are no provisions for 2646
confidentiality of Registry content. All content submitted to the Registry may be 2647
discovered and read by any client. Therefore, the Registry must be able to 2648
decrypt any submitted content after it has been received and prior to storing it in 2649
its repository. This implies that the Registry and the client have an a priori 2650
agreement regarding encryption algorithm, key exchange agreements, etc. This 2651
service is not addressed in this specification. 2652

9.4 Authorization 2653

The Registry must provide an authorization mechanism based on the information 2654
model defined in [RIM]. In this version of the specification the authorization 2655
mechanism is based on a default Access Control Policy defined for a pre-defined 2656
set of roles for Registry users. Future versions of this specification will allow for 2657
custom Access Control Policies to be defined by the Submitting Organization. 2658

9.4.1 Pre-defined Roles For Registry Users 2659

The following roles must be pre-defined in the Registry: 2660

Role Description

ContentOwner The submitter or owner of a Registry content. Submitting
Organization (SO) in ISO 11179

RegistryAdministrator A “super” user that is an administrator of the Registry.
Registration Authority (RA) in ISO 11179

RegistryGuest Any unauthenticated user of the Registry. Clients that

ebXML Registry January 2001

ebXML Registry Services Specification Page 84

Copyright © ebXML 2000 & 2001. All Rights Reserved.

browse the Registry do not need to be authenticated.

9.4.2 Default Access Control Policies 2661

The Registry must create a default AccessControlPolicy object that grants the 2662
default permissions to Registry users based upon their assigned role. 2663

The following table defines the Permissions granted by the Registry to the 2664
various pre-defined roles for Registry users based upon the default 2665
AccessControlPolicy. 2666

 2667

Role Permissions

ContentOwner
Access to all methods on Registry Objects that are
owned by the ContentOwner.

RegistryAdministrator Access to all methods on all Registry Objects

RegistryGuest Access to all read-only (getXXX) methods on all Registry
Objects (read-only access to all content).

 2668

The following list summarizes the default role-based AccessControlPolicy: 2669

?? The Registry must implement the default AccessControlPolicy and 2670
associate it with all Objects in the Registry 2671

?? Anyone can publish content, but needs to be authenticated 2672

?? Anyone can access the content without requiring authentication 2673

?? The ContentOwner has access to all methods for Registry Objects owned 2674
by them 2675

?? The RegistryAdministrator has access to all methods on all Registry 2676
Objects 2677

?? Unauthenticated clients can access all read-only (getXXX) methods 2678

?? At the time of content submission, the Registry must assign the default 2679
ContentOwner role to the Submitting Organization (SO) as authenticated 2680
by the credentials in the submission message. In the current version of 2681
this specification, it will be the DN as identified by the certificate 2682

?? Clients that browse the Registry need not use certificates. The Registry 2683
must assign the default RegistryGuest role to such clients. 2684

ebXML Registry January 2001

ebXML Registry Services Specification Page 85

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix A Schemas and DTD Definitions 2685

The following are definitions for the various ebXML Message payloads described 2686
in this document. 2687

A.1 ebXMLError Message DTD 2688

See [ERR] for ebXMLError Message DTD. 2689

A.2 ebXML Registry DTD 2690
<?xml version="1.0" encoding="UTF-8"?> 2691
<!-- Begin information model mapping. --> 2692
<!ENTITY % errorSchema SYSTEM "ebXMLError.dtd"> 2693
%errorSchema; 2694
 2695
<!-- 2696
ObjectAttributes are attributes from the Object interface in RIM. 2697
 2698
id may be empty. If specified it may be in urn:uuid format or be in some arbitrary format. 2699
If id is empty registry must generate globally unique id. 2700
If id is provided and in proper UUID syntax (starts with urn:uuid:) registry will honour 2701
it 2702
If id is provided and is not in proper UUID syntax then it is used for linkage within 2703
document 2704
and is ignored by the registry. In this case the registry generates a UUID for id 2705
attribute. 2706
 2707
id must not be null when object is being retrieved from the registry. 2708
--> 2709
<!ENTITY % ObjectAttributes " 2710
 id ID #IMPLIED 2711
 name CDATA #IMPLIED 2712
 description CDATA #IMPLIED 2713
"> 2714
 2715
<!-- 2716
Use as a proxy for an Object that is in the registry already. 2717
Specifies the id attribute of the object in the registry as its id attribute. 2718
id attribute in ObjectAttributes is exactly the same syntax and semantics as id attribute 2719
in Object. 2720
--> 2721
<!ELEMENT ObjectRef EMPTY> 2722
<!ATTLIST ObjectRef 2723
 id ID #IMPLIED 2724
> 2725
<!ELEMENT ObjectRefList (ObjectRef)*> 2726
 2727
 2728
<!-- 2729
RegistryEntryAttributes are attributes from the RegistryEntry interface in RIM. 2730
It inherits ObjectAttributes 2731
--> 2732
<!ENTITY % RegistryEntryAttributes " %ObjectAttributes; 2733
 majorVersion CDATA '1' 2734
 minorVersion CDATA '0' 2735
 2736
 status CDATA #IMPLIED 2737
 userVersion CDATA #IMPLIED 2738
 stability CDATA 'Dynamic' 2739
 expirationDate CDATA #IMPLIED"> 2740

ebXML Registry January 2001

ebXML Registry Services Specification Page 86

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 2741
<!ELEMENT RegistryEntry (SlotList?)> 2742
<!ATTLIST RegistryEntry 2743
 %RegistryEntryAttributes; 2744
> 2745
<!ELEMENT Value (#PCDATA)> 2746
<!ELEMENT ValueList (Value*)> 2747
<!ELEMENT Slot (ValueList?)> 2748
<!ATTLIST Slot 2749
 name CDATA #REQUIRED 2750
 slotType CDATA #IMPLIED 2751
> 2752
<!ELEMENT SlotList (Slot*)> 2753
 2754
<!-- 2755
ExtrinsicObject are attributes from the ExtrinsicObject interface in RIM. 2756
It inherits RegistryEntryAttributes 2757
--> 2758
 2759
<!ELEMENT ExtrinsicObject (ClassificationIndexList?)> 2760
<!ATTLIST ExtrinsicObject 2761
 %RegistryEntryAttributes; 2762
 contentURI CDATA #REQUIRED 2763
 mimeType CDATA #IMPLIED 2764
 objectType CDATA #REQUIRED 2765
 opaque (true | false) "false" 2766
> 2767
 2768
<!-- 2769
A ClassificationIndexList is specified on ExtrinsicObjects of objectType 'Schema' to 2770
define 2771
an automatic Classification of instance objects of the schema using 2772
the specified classificationNode as parent and a ClassificationNode 2773
created or selected by the object content as selected by the contentIdentifier 2774
--> 2775
<!ELEMENT ClassificationIndex EMPTY> 2776
<!ATTLIST ClassificationIndex 2777
 %ObjectAttributes; 2778
 classificationNode IDREF #REQUIRED 2779
 contentIdentifier CDATA #REQUIRED 2780
> 2781
 2782
<!-- ClassificationIndexList contains new ClassificationIndexes --> 2783
<!ELEMENT ClassificationIndexList (ClassificationIndex)*> 2784
 2785
<!ENTITY % IntrinsicObjectAttributes " %RegistryEntryAttributes;"> 2786
 2787
<!-- Leaf classes that reflect the concrete classes in RIM --> 2788
<!ELEMENT RegistryEntryList (Association | Classification | ClassificationNode | Package 2789
| ExternalLink | ExternalIdentifier | Organization | ExtrinsicObject | ObjectRef)*> 2790
 2791
 2792
<!-- 2793
An ExternalLink specifies a link from a RegistryEntry and an external URI 2794
--> 2795
<!ELEMENT ExternalLink EMPTY> 2796
<!ATTLIST ExternalLink 2797
 %IntrinsicObjectAttributes; 2798
 externalURI CDATA #IMPLIED 2799
> 2800
 2801
<!-- 2802
An ExternalIdentifier provides an identifier for a RegistryEntry 2803
 2804
The value is the value of the identifier (e.g. the social security number) 2805
--> 2806
<!ELEMENT ExternalIdentifier EMPTY> 2807
<!ATTLIST ExternalIdentifier 2808

ebXML Registry January 2001

ebXML Registry Services Specification Page 87

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 %IntrinsicObjectAttributes; 2809
 value CDATA #REQUIRED 2810
> 2811
 2812
<!-- 2813
An Association specifies references to two previously submitted 2814
registry entrys. 2815
 2816
The sourceObject is id of the sourceObject in association 2817
The targetObject is id of the targetObject in association 2818
--> 2819
<!ELEMENT Association EMPTY> 2820
<!ATTLIST Association 2821
 %IntrinsicObjectAttributes; 2822
 fromLabel CDATA #IMPLIED 2823
 toLabel CDATA #IMPLIED 2824
 associationType CDATA #REQUIRED 2825
 bidirection (true | false) "false" 2826
 sourceObject IDREF #REQUIRED 2827
 targetObject IDREF #REQUIRED 2828
> 2829
 2830
<!-- 2831
A Classification specifies references to two registry entrys. 2832
 2833
The classifiedObject is id of the Object being classified. 2834
The classificationNode is id of the ClassificationNode classying the object 2835
--> 2836
<!ELEMENT Classification EMPTY> 2837
<!ATTLIST Classification 2838
 %IntrinsicObjectAttributes; 2839
 classifiedObject IDREF #REQUIRED 2840
 classificationNode IDREF #REQUIRED 2841
> 2842
 2843
<!-- 2844
A Package is a named collection of objects. 2845
--> 2846
<!ELEMENT Package EMPTY> 2847
<!ATTLIST Package 2848
 %IntrinsicObjectAttributes; 2849
> 2850
 2851
<!-- Attributes inherited by various types of telephone number elements --> 2852
<!ENTITY % TelephoneNumberAttributes " areaCode CDATA #REQUIRED 2853
 contryCode CDATA #REQUIRED 2854
 extension CDATA #IMPLIED 2855
 number CDATA #REQUIRED 2856
 url CDATA #IMPLIED"> 2857
<!ELEMENT TelephoneNumber EMPTY> 2858
<!ATTLIST TelephoneNumber 2859
 %TelephoneNumberAttributes; 2860
> 2861
<!ELEMENT FaxNumber EMPTY> 2862
<!ATTLIST FaxNumber 2863
 %TelephoneNumberAttributes; 2864
> 2865
 2866
<!ELEMENT PagerNumber EMPTY> 2867
<!ATTLIST PagerNumber 2868
 %TelephoneNumberAttributes; 2869
> 2870
 2871
<!ELEMENT MobileTelephoneNumber EMPTY> 2872
<!ATTLIST MobileTelephoneNumber 2873
 %TelephoneNumberAttributes; 2874
> 2875
<!-- PostalAddress --> 2876

ebXML Registry January 2001

ebXML Registry Services Specification Page 88

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!ELEMENT PostalAddress EMPTY> 2877
<!ATTLIST PostalAddress 2878
 city CDATA #REQUIRED 2879
 country CDATA #REQUIRED 2880
 postalCode CDATA #REQUIRED 2881
 state CDATA #REQUIRED 2882
 street CDATA #REQUIRED 2883
> 2884
<!-- PersonName --> 2885
<!ELEMENT PersonName EMPTY> 2886
<!ATTLIST PersonName 2887
 firstName CDATA #REQUIRED 2888
 middleName CDATA #REQUIRED 2889
 lastName CDATA #REQUIRED 2890
> 2891
 2892
<!-- Organization --> 2893
<!ELEMENT Organization (PostalAddress, FaxNumber?, TelephoneNumber)> 2894
<!ATTLIST Organization 2895
 %IntrinsicObjectAttributes; 2896
 parent IDREF #IMPLIED 2897
 primaryContact IDREF #REQUIRED 2898
> 2899
 2900
<!ELEMENT User (PersonName, PostalAddress, TelephoneNumber, MobileTelephoneNumber?, 2901
FaxNumber?, PagerNumber?)> 2902
<!ATTLIST User 2903
 %ObjectAttributes; 2904
 organization IDREF #IMPLIED 2905
 email CDATA #IMPLIED 2906
 url CDATA #IMPLIED 2907
> 2908
 2909
<!ELEMENT AuditableEvent EMPTY> 2910
<!ATTLIST AuditableEvent 2911
 %ObjectAttributes; 2912
 eventType CDATA #REQUIRED 2913
 registryEntry IDREF #REQUIRED 2914
 timestamp CDATA #REQUIRED 2915
 user IDREF #REQUIRED 2916
> 2917
<!-- 2918
ClassificationNode is used to submit a Classification tree to the Registry. 2919
 2920
parent is the id to the parent node. code is an optional code value for a 2921
ClassificationNode 2922
often defined by an external taxonomy (e.g. NAICS) 2923
--> 2924
<!ELEMENT ClassificationNode EMPTY> 2925
<!ATTLIST ClassificationNode 2926
 %IntrinsicObjectAttributes; 2927
 parent IDREF #IMPLIED 2928
 code CDATA #IMPLIED 2929
> 2930
 2931
<!-- 2932
End information model mapping. 2933
 2934
Begin Registry Services Interface 2935
--> 2936
<!ELEMENT RequestAcceptedResponse EMPTY> 2937
<!ATTLIST RequestAcceptedResponse 2938
 xml:lang NMTOKEN #REQUIRED 2939
 interfaceId CDATA #REQUIRED 2940
 requestMessage CDATA #REQUIRED 2941
 actionId CDATA #REQUIRED 2942
> 2943
<!-- 2944

ebXML Registry January 2001

ebXML Registry Services Specification Page 89

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The SubmittedObject provides meta data for submitted object 2945
Note object being submitted is in a separate document that is not 2946
in this DTD. 2947
--> 2948
<!ELEMENT SubmitObjectsRequest (RegistryEntryList)> 2949
<!ELEMENT AddSlotsRequest (ObjectRef, SlotList)+> 2950
<!-- Only need name in Slot within SlotList --> 2951
<!ELEMENT RemoveSlotsRequest (ObjectRef, SlotList)+> 2952
<!-- 2953
The ObjectRefList is the list of 2954
refs to the registry entrys being approved. 2955
--> 2956
<!ELEMENT ApproveObjectsRequest (ObjectRefList)> 2957
<!-- 2958
The ObjectRefList is the list of 2959
refs to the registry entrys being deprecated. 2960
--> 2961
<!ELEMENT DeprecateObjectsRequest (ObjectRefList)> 2962
<!-- 2963
The ObjectRefList is the list of 2964
refs to the registry entrys being removed 2965
--> 2966
<!ELEMENT RemoveObjectsRequest (ObjectRefList)> 2967
<!ATTLIST RemoveObjectsRequest 2968
 deletionScope (DeleteAll | DeleteRepositoryItemOnly) "DeleteAll" 2969
> 2970
<!ELEMENT GetRootClassificationNodesRequest EMPTY> 2971
<!-- 2972
The namePattern follows SQL-92 syntax for the pattern specified in 2973
LIKE clause. It allows for selecting only those root nodes that match 2974
the namePattern. The default value of '*' matches all root nodes. 2975
--> 2976
<!ATTLIST GetRootClassificationNodesRequest 2977
 namePattern CDATA "*" 2978
> 2979
<!-- 2980
The response includes one or more ClassificationNodes 2981
--> 2982
<!ELEMENT GetRootClassificationNodesResponse ((ClassificationNode+) | ebXMLError)> 2983
<!-- 2984
Get the classification tree under the ClassificationNode specified parentRef. 2985
 2986
If depth is 1 just fetch immediate child 2987
nodes, otherwise fetch the descendant tree upto the specified depth level. 2988
If depth is 0 that implies fetch entire sub-tree 2989
--> 2990
<!ELEMENT GetClassificationTreeRequest EMPTY> 2991
<!ATTLIST GetClassificationTreeRequest 2992
 parent CDATA #REQUIRED 2993
 depth CDATA "1" 2994
> 2995
<!-- 2996
The response includes one or more ClassificationNodes which includes only 2997
immediate ClassificationNode children nodes if depth attribute in 2998
GetClassificationTreeRequest was 1, otherwise the decendent nodes 2999
upto specified depth level are returned. 3000
--> 3001
<!ELEMENT GetClassificationTreeResponse ((ClassificationNode+) | ebXMLError)> 3002
<!-- 3003
Get refs to all registry entrys that are classified by all the 3004
ClassificationNodes specified by ObjectRefList. 3005
Note this is an implicit logical AND operation 3006
--> 3007
<!ELEMENT GetClassifiedObjectsRequest (ObjectRefList)> 3008
<!-- 3009
objectType attribute can specify the type of objects that the registry 3010
client is interested in, that is classified by this ClassificationNode. 3011
It is a String that matches a choice in the type attribute of ExtrinsicObject. 3012

ebXML Registry January 2001

ebXML Registry Services Specification Page 90

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The default value of '*' implies that client is interested in all types 3013
of registry entrys that are classified by the specified ClassificationNode. 3014
--> 3015
<!-- 3016
The response includes a RegistryEntryList which has zero or more 3017
RegistryEntrys that are classified by the ClassificationNodes 3018
specified in the ObjectRefList in GetClassifiedObjectsRequest. 3019
--> 3020
<!ELEMENT GetClassifiedObjectsResponse (RegistryEntryList | ebXMLError)> 3021
<!-- 3022
An Ad hoc query request specifies a query string as defined by [RS] in the queryString 3023
attribute 3024
--> 3025
<!ELEMENT AdhocQueryRequest (FilterQuery | GetRegistryEntry | GetRepositoryItem | 3026
SQLQuery)> 3027
<!ELEMENT SQLQuery (#PCDATA)> 3028
<!-- 3029
The response includes a RegistryEntryList which has zero or more 3030
RegistryEntrys that match the query specified in AdhocQueryRequest. 3031
--> 3032
<!ELEMENT AdhocQueryResponse (RegistryEntryList | FilterQueryResult | 3033
GetRegistryEntryResult | GetRepositoryItemResult | ebXMLError)> 3034
<!-- 3035
Gets the actual content (not metadata) specified by the ObjectRefList 3036
--> 3037
<!ELEMENT GetContentRequest (ObjectRefList)> 3038
<!-- 3039
The GetObjectsResponse will have no sub-elements if there were no errors. 3040
The actual contents will be in the other payloads of the message. 3041
If any errors were encountered the message will contain the ebXMLError and 3042
the content payloads will be empty. 3043
--> 3044
<!ELEMENT GetContentResponse (ebXMLError?)> 3045
<!-- 3046
Describes the capability profile for the registry and what optional features 3047
are supported 3048
--> 3049
<!ELEMENT RegistryProfile (OptionalFeaturesSupported)> 3050
<!ATTLIST RegistryProfile 3051
 version CDATA #REQUIRED 3052
> 3053
 3054
<!ELEMENT OptionalFeaturesSupported EMPTY> 3055
<!ATTLIST OptionalFeaturesSupported 3056
 sqlQuery (true | false) "false" 3057
 xQuery (true | false) "false" 3058
> 3059
<!-- Begin FilterQuery DTD --> 3060
<!ELEMENT FilterQuery (RegistryEntryQuery | AuditableEventQuery | ClassificationNodeQuery 3061
| RegistryPackageQuery | OrganizationQuery)> 3062
<!ELEMENT FilterQueryResult (RegistryEntryQueryResult | AuditableEventQueryResult | 3063
ClassificationNodeQueryResult | RegistryPackageQueryResult | OrganizationQueryResult)> 3064
<!ELEMENT RegistryEntryQueryResult (RegistryEntryView*)> 3065
<!ELEMENT RegistryEntryView EMPTY> 3066
<!ATTLIST RegistryEntryView 3067
 objectURN CDATA #REQUIRED 3068
 contentURL CDATA #IMPLIED 3069
 objectID CDATA #IMPLIED 3070
> 3071
<!ELEMENT AuditableEventQueryResult (AuditableEventView*)> 3072
<!ELEMENT AuditableEventView EMPTY> 3073
<!ATTLIST AuditableEventView 3074
 objectID CDATA #REQUIRED 3075
 timestamp CDATA #REQUIRED 3076
> 3077
<!ELEMENT ClassificationNodeQueryResult (ClassificationNodeView*)> 3078
<!ELEMENT ClassificationNodeView EMPTY> 3079
<!ATTLIST ClassificationNodeView 3080

ebXML Registry January 2001

ebXML Registry Services Specification Page 91

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 objectURN CDATA #REQUIRED 3081
 contentURL CDATA #IMPLIED 3082
 objectID CDATA #IMPLIED 3083
> 3084
<!ELEMENT RegistryPackageQueryResult (RegistryPackageView*)> 3085
<!ELEMENT RegistryPackageView EMPTY> 3086
<!ATTLIST RegistryPackageView 3087
 objectURN CDATA #REQUIRED 3088
 contentURL CDATA #IMPLIED 3089
 objectID CDATA #IMPLIED 3090
> 3091
<!ELEMENT OrganizationQueryResult (OrganizationView*)> 3092
<!ELEMENT OrganizationView EMPTY> 3093
<!ATTLIST OrganizationView 3094
 orgURN CDATA #REQUIRED 3095
 contactURL CDATA #IMPLIED 3096
 objectID CDATA #IMPLIED 3097
> 3098
<!ELEMENT StatusResult (Success | (Exception | Warning)+)> 3099
<!ELEMENT Success EMPTY> 3100
<!ELEMENT Exception (#PCDATA)> 3101
<!ATTLIST Exception 3102
 code CDATA #REQUIRED 3103
> 3104
<!ELEMENT Warning (#PCDATA)> 3105
<!ATTLIST Warning 3106
 code CDATA #REQUIRED 3107
> 3108
<!ELEMENT RegistryEntryQuery (RegistryEntryFilter?, AsSourceAssociation*, 3109
AsTargetAssociation*, RegistryEntryClassification*, SubmittingOrgFilter?, 3110
ResponsibleOrgFilter?, ExternalLinkFilter*, RegistryEntryAuditableEvent*)> 3111
<!ELEMENT AsSourceAssociation (AssociationFilter?, RegistryEntryFilter?)> 3112
<!ELEMENT AsTargetAssociation (AssociationFilter?, RegistryEntryFilter?)> 3113
<!ELEMENT RegistryEntryClassification (ClassificationFilter?, ClassificationNodeFilter?)> 3114
<!ELEMENT SubmittingOrgFilter (OrganizationFilter?, ContactFilter?)> 3115
<!ELEMENT ResponsibleOrgFilter (OrganizationFilter?, ContactFilter?)> 3116
<!ELEMENT RegistryEntryAuditableEvent (AuditableEventFilter?, UserFilter?, 3117
OrganizationFilter?)> 3118
<!ELEMENT AuditableEventQuery (AuditableEventFilter?, RegistryEntryQuery*, UserFilter?, 3119
OrganizationQuery?)> 3120
<!ELEMENT ClassificationNodeQuery (ClassificationNodeFilter?, ClassifiesRegistryEntry*, 3121
HasParentNode?, HasSubnode*)> 3122
<!ELEMENT ClassifiesRegistryEntry (ClassificationFilter?, RegistryEntryQuery?)> 3123
<!ELEMENT HasParentNode (ClassificationNodeFilter?, HasParentNode?)> 3124
<!ELEMENT HasSubnode (ClassificationNodeFilter?, HasSubnode*)> 3125
<!ELEMENT RegistryPackageQuery (PackageFilter?, PackageHasMember*)> 3126
<!ELEMENT PackageHasMember (RegistryEntryQuery?)> 3127
<!ELEMENT OrganizationQuery (OrganizationFilter?, SubmitsEntry*, HasParentOrganization?, 3128
InvokesEvent*, ContactFilter*)> 3129
<!ELEMENT SubmitsEntry (RegistryEntryQuery?)> 3130
<!ELEMENT HasParentOrganization (OrganizationFilter?, HasParentOrganization?)> 3131
<!ELEMENT InvokesEvent (UserFilter?, AuditableEventFilter?, RegistryEntryQuery?)> 3132
<!ELEMENT GetRegistryEntry (RegistryEntryQuery, WithClassifications?, 3133
WithAsSourceAssociations?, WithAsTargetAssociations?, WithAuditableEvents?, 3134
WithExternalLinks?)> 3135
<!ELEMENT WithClassifications (ClassificationFilter?)> 3136
<!ELEMENT WithAsSourceAssociations (AssociationFilter?)> 3137
<!ELEMENT WithAsTargetAssociations (AssociationFilter?)> 3138
<!ELEMENT WithAuditableEvents (AuditableEventFilter?)> 3139
<!ELEMENT WithExternalLinks (ExternalLinkFilter?)> 3140
<!ELEMENT GetRegistryEntryResult (RegistryEntryMetadata*, StatusResult)> 3141
<!ELEMENT RegistryEntryMetadata (RegistryEntry, Classification*, AsSourceAssociations?, 3142
AsTargetAssociations?, AuditableEvent*, ExternalLink*)> 3143
<!ELEMENT AsSourceAssociations (Association*)> 3144
<!ELEMENT AsTargetAssociations (Association*)> 3145
<!ELEMENT GetRepositoryItem (RegistryEntryQuery, RecursiveAssociationOption?, 3146
WithShortDescription?)> 3147
<!ELEMENT RecursiveAssociationOption (AssociationRole+)> 3148

ebXML Registry January 2001

ebXML Registry Services Specification Page 92

Copyright © ebXML 2000 & 2001. All Rights Reserved.

<!ATTLIST RecursiveAssociationOption 3149
 depthLimit CDATA #IMPLIED 3150
> 3151
<!ELEMENT AssociationRole EMPTY> 3152
<!ATTLIST AssociationRole 3153
 role CDATA #REQUIRED 3154
> 3155
<!ELEMENT WithShortDescription EMPTY> 3156
<!ELEMENT GetRepositoryItemResult (RepositoryItem*, StatusResult)> 3157
<!ELEMENT RepositoryItem (RegistryPackage | ExtrinsicObject | WithdrawnObject | 3158
ExternalItem)> 3159
<!ATTLIST RepositoryItem 3160
 identifier CDATA #REQUIRED 3161
 name CDATA #REQUIRED 3162
 repositoryURL CDATA #REQUIRED 3163
 objectType CDATA #REQUIRED 3164
 status CDATA #REQUIRED 3165
 stability CDATA #REQUIRED 3166
 description CDATA #IMPLIED 3167
> 3168
<!ELEMENT RegistryPackage EMPTY> 3169
<!ELEMENT WithdrawnObject EMPTY> 3170
<!ELEMENT ExternalItem EMPTY> 3171
<!ELEMENT ObjectFilter (Clause)> 3172
<!ELEMENT RegistryEntryFilter (Clause)> 3173
<!ELEMENT IntrinsicObjectFilter (Clause)> 3174
<!ELEMENT ExtrinsicObjectFilter (Clause)> 3175
<!ELEMENT PackageFilter (Clause)> 3176
<!ELEMENT OrganizationFilter (Clause)> 3177
<!ELEMENT ContactFilter (Clause)> 3178
<!ELEMENT ClassificationNodeFilter (Clause)> 3179
<!ELEMENT AssociationFilter (Clause)> 3180
<!ELEMENT ClassificationFilter (Clause)> 3181
<!ELEMENT ExternalLinkFilter (Clause)> 3182
<!ELEMENT AuditableEventFilter (Clause)> 3183
<!ELEMENT UserFilter (Clause)> 3184
<!ELEMENT Clause (SimpleClause | CompoundClause)> 3185
<!ELEMENT SimpleClause (BooleanClause | RationalClause | StringClause)> 3186
<!ATTLIST SimpleClause 3187
 leftArgument CDATA #REQUIRED 3188
> 3189
<!ELEMENT CompoundClause (Clause, Clause+)> 3190
<!ATTLIST CompoundClause 3191
 connectivePredicate (And | Or) #REQUIRED 3192
> 3193
<!ELEMENT BooleanClause EMPTY> 3194
<!ATTLIST BooleanClause 3195
 booleanPredicate (true | false) #REQUIRED 3196
> 3197
<!ELEMENT RationalClause (IntClause | FloatClause)> 3198
<!ATTLIST RationalClause 3199
 logicalPredicate (LE | LT | GE | GT | EQ | NE) #REQUIRED 3200
> 3201
<!ELEMENT IntClause (#PCDATA)> 3202
<!ATTLIST IntClause 3203
 e-dtype NMTOKEN #FIXED "int" 3204
> 3205
<!ELEMENT FloatClause (#PCDATA)> 3206
<!ATTLIST FloatClause 3207
 e-dtype NMTOKEN #FIXED "float" 3208
> 3209
<!ELEMENT StringClause (#PCDATA)> 3210
<!ATTLIST StringClause 3211
 stringPredicate (contains | -contains | startswith | -startswith | endswith | -3212
endswith) #REQUIRED 3213
> 3214
<!-- End FilterQuery DTD --> 3215
<!-- 3216

ebXML Registry January 2001

ebXML Registry Services Specification Page 93

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The contrived root node 3217
--> 3218
<!ELEMENT RootElement (RequestAcceptedResponse | ebXMLError | SubmitObjectsRequest | 3219
ApproveObjectsRequest | DeprecateObjectsRequest | RemoveObjectsRequest | 3220
GetRootClassificationNodesRequest | GetRootClassificationNodesResponse | 3221
GetClassificationTreeRequest | GetClassificationTreeResponse | 3222
GetClassifiedObjectsRequest | GetClassifiedObjectsResponse | AdhocQueryRequest | 3223
AdhocQueryResponse | GetContentRequest | GetContentResponse | AddSlotsRequest | 3224
RemoveSlotsRequest | RegistryProfile)> 3225

Appendix B Interpretation of UML Diagrams 3226

This section describes in abstract terms the conventions used to define ebXML 3227
business process description in UML. 3228

B.1 UML Class Diagram 3229

A UML class diagram is used to describe the Service Interfaces (as defined by 3230
[CPA]) required to implement an ebXML Registry Services and clients. See 3231
Figure 2 on page 15 for an example. The UML class diagram contains: 3232

 3233

1. A collection of UML interfaces where each interface represents a Service 3234
Interface for a Registry service. 3235

2. Tabular description of methods on each interface where each method 3236
represents an Action (as defined by [CPA]) within the Service Interface 3237
representing the UML interface. 3238

3. Each method within a UML interface specifies one or more parameters, 3239
where the type of each method argument represents the ebXML message 3240
type that is exchanged as part of the Action corresponding to the method. 3241
Multiple arguments imply multiple payload documents within the body of 3242
the corresponding ebXML message. 3243

B.2 UML Sequence Diagram 3244

A UML sequence diagram is used to specify the business protocol representing 3245
the interactions between the UML interfaces for a Registry specific ebXML 3246
business process. A UML sequence diagram provides the necessary information 3247
to determine the sequencing of messages, request to response association as 3248
well as request to error response association as described by [CPA]. 3249

Each sequence diagram shows the sequence for a specific conversation protocol 3250
as method calls from the requestor to the responder. Method invocation may be 3251
synchronous or asynchronous based on the UML notation used on the arrow-3252
head for the link. A half arrow-head represents asynchronous communication. A 3253
full arrow-head represents synchronous communication. 3254

ebXML Registry January 2001

ebXML Registry Services Specification Page 94

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Each method invocation may be followed by a response method invocation from 3255
the responder to the requestor to indicate the ResponseName for the previous 3256
Request. Possible error response is indicated by a conditional response method 3257
invocation from the responder to the requestor. See Figure 4 on page 22 for an 3258
example. 3259

Appendix C SQL Query 3260

C.1 SQL Query Syntax Specification 3261

This section specifies the rules that define the SQL Query syntax as a subset of 3262
SQL-92. The terms enclosed in angle brackets are defined in [SQL] or in 3263
[SQL/PSM]. 3264

 3265

1. The SQL query syntax conforms to the <query specification>, modulo the 3266
restrictions identified below 3267

2. A <select list> may contain at most one <select sublist> 3268

3. In a <select list> must be is a single column whose data type is UUID, 3269
from the table in the <from clause>, 3270

4. A <derived column> may not have an <as clause> 3271

5. <table expression> does not contain the optional <group by clause> and 3272
<having clause> clauses. 3273

6. A <table reference> can only consist of <table name> and <correlation 3274
name> 3275

7. A <table reference> does not have the optional AS between <table name> 3276
and <correlation name> 3277

8. There can only be one <table reference> in the <from clause> 3278

9. Restricted use of sub-queries is allowed by the syntax as follows. The <in 3279
predicate> allows for the right hand side of the <in predicate> to be limited 3280
to a restricted <query specification> as defined above. 3281

10. A <search condition> within the <where clause> may not include a <query 3282
expression>. 3283

 3284

11. The SQL query syntax allows for the use of <sql invoked routines> 3285

invocation from [SQL/PSM] as the RHS of the <in predicate>. 3286

ebXML Registry January 2001

ebXML Registry Services Specification Page 95

Copyright © ebXML 2000 & 2001. All Rights Reserved.

C.2 Non-Normative BNF for Query Syntax Grammar 3287

The following BNF exemplifies the grammar for the registry query syntax. It is 3288
provided here as an aid to implementors. Since this BNF is not based on [SQL] it 3289
is provided as non-normative syntax. For the normative syntax rules see 3290
appendix C.1. 3291

 3292
 3293
/*** 3294
 * The Registry Query (Subset of SQL-92) grammar starts here 3295
 ***/ 3296
 3297
RegistryQuery = SQLSelect [“;”] 3298
 3299
SQLSelect = "SELECT" SQLSelectCols "FROM" SQLTableList [SQLWhere] 3300
 3301
SQLSelectCols = ID 3302
 3303
SQLTableList = SQLTableRef 3304
 3305
SQLTableRef = ID 3306
 3307
SQLWhere = "WHERE" SQLOrExpr 3308
 3309
SQLOrExpr = SQLAndExpr ("OR" SQLAndExpr)* 3310
 3311
SQLAndExpr = SQLNotExpr ("AND" SQLNotExpr)* 3312
 3313
SQLNotExpr = ["NOT"] SQLCompareExpr 3314
 3315
SQLCompareExpr = 3316
 (SQLColRef "IS") SQLIsClause 3317
 | SQLSumExpr [SQLCompareExprRight] 3318
 3319
 3320
SQLCompareExprRight = 3321
 SQLLikeClause 3322
 | SQLInClause 3323
 | SQLCompareOp SQLSumExpr 3324
 3325
SQLCompareOp = 3326
 "=" 3327
 | "<>" 3328
 | ">" 3329
 | ">=" 3330
 | "<" 3331
 | "<=" 3332
 3333
SQLInClause = ["NOT"] "IN" "(" SQLLValueList ")" 3334
 3335
SQLLValueList = SQLLValueElement ("," SQLLValueElement)* 3336
 3337
SQLLValueElement = "NULL" | SQLSelect 3338
 3339
SQLIsClause = SQLColRef "IS" ["NOT"] "NULL" 3340
 3341
SQLLikeClause = ["NOT"] "LIKE" SQLPattern 3342
 3343
SQLPattern = STRING_LITERAL 3344
 3345
SQLLiteral = 3346
 STRING_LITERAL 3347
 | INTEGER_LITERAL 3348
 | FLOATING_POINT_LITERAL 3349

ebXML Registry January 2001

ebXML Registry Services Specification Page 96

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 3350
SQLColRef = SQLLvalue 3351
 3352
SQLLvalue = SQLLvalueTerm 3353
 3354
SQLLvalueTerm = ID ("." ID)* 3355
 3356
SQLSumExpr = SQLProductExpr (("+" | "-") SQLProductExpr)* 3357
 3358
SQLProductExpr = SQLUnaryExpr (("*" | "/") SQLUnaryExpr)* 3359
 3360
SQLUnaryExpr = [("+" | "-")] SQLTerm 3361
 3362
SQLTerm = "(" SQLOrExpr ")" 3363
 | SQLColRef 3364
 | SQLLiteral 3365
 3366
INTEGER_LITERAL = (["0"-"9"])+ 3367
 3368
FLOATING_POINT_LITERAL = 3369
 (["0"-"9"])+ "." (["0"-"9"])+ (EXPONENT)? 3370
 | "." (["0"-"9"])+ (EXPONENT)? 3371
 | (["0"-"9"])+ EXPONENT 3372
 | (["0"-"9"])+ (EXPONENT)? 3373
 3374
EXPONENT = ["e","E"] (["+","-"])? (["0"-"9"])+ 3375
 3376
STRING_LITERAL: "'" (~["'"])* ("''" (~["'"])*)* "'" 3377
 3378
ID = (<LETTER>)+ ("_" | "$" | "#" | <DIGIT> | <LETTER>)* 3379
LETTER = ["A"-"Z", "a"-"z"] 3380
DIGIT = ["0"-"9"] 3381

C.3 Relational Schema For SQL Queries 3382
 3383
--SQL Load file for creating the ebXML Registry tables 3384
 3385
 3386
--Minimal use of SQL-99 features in DDL is illustrative and may be easily mapped to SQL-3387
92 3388
 3389
 3390
CREATE TYPE ShortName AS VARCHAR(64) NOT FINAL; 3391
CREATE TYPE LongName AS VARCHAR(128) NOT FINAL; 3392
CREATE TYPE FreeFormText AS VARCHAR(256) NOT FINAL; 3393
 3394
CREATE TYPE UUID UNDER ShortName FINAL; 3395
CREATE TYPE URI UNDER LongName FINAL; 3396
 3397
CREATE TABLE ExtrinsicObject (3398
 3399
--Object Attributes 3400
 id UUID PRIMARY KEY NOT NULL, 3401
 name LongName, 3402
 description FreeFormText, 3403
 accessControlPolicy UUID NOT NULL, 3404
 3405
--Versionable attributes 3406
 majorVersion INT DEFAULT 0 NOT NULL, 3407
 minorVersion INT DEFAULT 1 NOT NULL, 3408
 3409
--RegistryEntry attributes 3410
 status INT DEFAULT 0 NOT NULL, 3411
 userVersion ShortName, 3412
 stability INT DEFAULT 0 NOT NULL, 3413

ebXML Registry January 2001

ebXML Registry Services Specification Page 97

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 expirationDate TIMESTAMP, 3414
 3415
--ExtrinsicObject attributes 3416
 contentURI URI, 3417
 mimeType ShortName, 3418
 objectType INT DEFAULT 0 NOT NULL, 3419
 opaque BOOLEAN DEFAULT false NOT NULL 3420
 3421
); 3422
 3423
CREATE PROCEDURE RegistryEntry_associatedObjects(registryEntryId) { 3424
--Must return a collection of UUIDs for related RegistryEntry instances 3425
} 3426
 3427
CREATE PROCEDURE RegistryEntry_auditTrail(registryEntryId) { 3428
--Must return an collection of UUIDs for AuditableEvents related to the RegistryEntry. 3429
--Collection must be in ascending order by timestamp 3430
} 3431
 3432
CREATE PROCEDURE RegistryEntry_externalLinks(registryEntryId) { 3433
--Must return a collection of UUIDs for ExternalLinks annotating this RegistryEntry. 3434
} 3435
 3436
CREATE PROCEDURE RegistryEntry_externalIdentifiers(registryEntryId) { 3437
--Must return a collection of UUIDs for ExternalIdentifiers for this RegistryEntry. 3438
} 3439
 3440
CREATE PROCEDURE RegistryEntry_classificationNodes(registryEntryId) { 3441
--Must return a collection of UUIDs for ClassificationNodes classifying this 3442
RegistryEntry. 3443
} 3444
 3445
CREATE PROCEDURE RegistryEntry_packages(registryEntryId) { 3446
--Must return a collection of UUIDs for Packages that this RegistryEntry belongs to. 3447
} 3448
 3449
CREATE TABLE Package (3450
 3451
--Object Attributes 3452
 id UUID PRIMARY KEY NOT NULL, 3453
 name LongName, 3454
 description FreeFormText, 3455
 accessControlPolicy UUID NOT NULL, 3456
 3457
--Versionable attributes 3458
 majorVersion INT DEFAULT 0 NOT NULL, 3459
 minorVersion INT DEFAULT 1 NOT NULL, 3460
 3461
--RegistryEntry attributes 3462
 status INT DEFAULT 0 NOT NULL, 3463
 userVersion ShortName, 3464
 stability INT DEFAULT 0 NOT NULL, 3465
 expirationDate TIMESTAMP, 3466
 3467
--Package attributes 3468
); 3469
 3470
CREATE PROCEDURE Package_memberbjects(packageId) { 3471
--Must return a collection of UUIDs for RegistryEntrys that are memebers of this Package. 3472
} 3473
 3474
CREATE TABLE ExternalLink (3475
 3476
--Object Attributes 3477
 id UUID PRIMARY KEY NOT NULL, 3478
 name LongName, 3479
 description FreeFormText, 3480
 accessControlPolicy UUID NOT NULL, 3481

ebXML Registry January 2001

ebXML Registry Services Specification Page 98

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 3482
--Versionable attributes 3483
 majorVersion INT DEFAULT 0 NOT NULL, 3484
 minorVersion INT DEFAULT 1 NOT NULL, 3485
 3486
--RegistryEntry attributes 3487
 status INT DEFAULT 0 NOT NULL, 3488
 userVersion ShortName, 3489
 stability INT DEFAULT 0 NOT NULL, 3490
 expirationDate TIMESTAMP, 3491
 3492
--ExternalLink attributes 3493
 externalURI URI NOT NULL 3494
); 3495
 3496
CREATE PROCEDURE ExternalLink_linkedObjects(registryEntryId) { 3497
--Must return a collection of UUIDs for objects in this relationship 3498
} 3499
 3500
CREATE TABLE ExternalIdentifier (3501
 3502
--Object Attributes 3503
 id UUID PRIMARY KEY NOT NULL, 3504
 name LongName, 3505
 description FreeFormText, 3506
 accessControlPolicy UUID NOT NULL, 3507
 3508
--Versionable attributes 3509
 majorVersion INT DEFAULT 0 NOT NULL, 3510
 minorVersion INT DEFAULT 1 NOT NULL, 3511
 3512
--RegistryEntry attributes 3513
 status INT DEFAULT 0 NOT NULL, 3514
 userVersion ShortName, 3515
 stability INT DEFAULT 0 NOT NULL, 3516
 expirationDate TIMESTAMP, 3517
 3518
--ExternalIdentifier attributes 3519
 value ShortName NOT NULL 3520
 3521
); 3522
 3523
 3524
--A SlotValue row represents one value of one slot in some 3525
--RegistryEntry 3526
CREATE TABLE SlotValue (3527
 3528
--Object Attributes 3529
 registryEntry UUID PRIMARY KEY NOT NULL, 3530
 3531
--Slot attributes 3532
 name LongName NOT NULL PRIMARY KEY NOT NULL, 3533
 value ShortName NOT NULL 3534
); 3535
 3536
CREATE TABLE Association (3537
--Object Attributes 3538
 id UUID PRIMARY KEY NOT NULL, 3539
 name LongName, 3540
 description FreeFormText, 3541
 accessControlPolicy UUID NOT NULL, 3542
 3543
--Versionable attributes 3544
 majorVersion INT DEFAULT 0 NOT NULL, 3545
 minorVersion INT DEFAULT 1 NOT NULL, 3546
 3547
--RegistryEntry attributes 3548
 status INT DEFAULT 0 NOT NULL, 3549

ebXML Registry January 2001

ebXML Registry Services Specification Page 99

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 userVersion ShortName, 3550
 stability INT DEFAULT 0 NOT NULL, 3551
 expirationDate TIMESTAMP, 3552
 3553
--Association attributes 3554
 associationType INT NOT NULL, 3555
 bidirectional BOOLEAN DEFAULT false NOT NULL, 3556
 sourceObject UUID NOT NULL, 3557
 sourceRole ShortName, 3558
 label ShortName, 3559
 targetObject UUID NOT NULL, 3560
 targetRole ShortName 3561
); 3562
 3563
--Classification is currently identical to Association 3564
CREATE TABLE Classification (3565
--Object Attributes 3566
 id UUID PRIMARY KEY NOT NULL, 3567
 name LongName, 3568
 description FreeFormText, 3569
 accessControlPolicy UUID NOT NULL, 3570
 3571
--Versionable attributes 3572
 majorVersion INT DEFAULT 0 NOT NULL, 3573
 minorVersion INT DEFAULT 1 NOT NULL, 3574
 3575
--RegistryEntry attributes 3576
 status INT DEFAULT 0 NOT NULL, 3577
 userVersion ShortName, 3578
 stability INT DEFAULT 0 NOT NULL, 3579
 expirationDate TIMESTAMP, 3580
 3581
--Classification attributes. Assumes not derived from Association 3582
 sourceObject UUID NOT NULL, 3583
 targetObject UUID NOT NULL, 3584
); 3585
 3586
 3587
CREATE TABLE ClassificationNode (3588
--Object Attributes 3589
 id UUID PRIMARY KEY NOT NULL, 3590
 name LongName, 3591
 description FreeFormText, 3592
 accessControlPolicy UUID NOT NULL, 3593
 3594
--Versionable attributes 3595
 majorVersion INT DEFAULT 0 NOT NULL, 3596
 minorVersion INT DEFAULT 1 NOT NULL, 3597
 3598
--RegistryEntry attributes 3599
 status INT DEFAULT 0 NOT NULL, 3600
 userVersion ShortName, 3601
 stability INT DEFAULT 0 NOT NULL, 3602
 expirationDate TIMESTAMP, 3603
 3604
--ClassificationNode attributes 3605
 parent UUID, 3606
 path VARCHAR(512) NOT NULL, 3607
 code ShortName 3608
); 3609
 3610
CREATE PROCEDURE ClassificationNode_classifiedObjects(classificationNodeId) { 3611
--Must return a collection of UUIDs for RegistryEntries classified by this 3612
ClassificationNode 3613
} 3614
 3615
--Begin Registry Audit Trail tables 3616
 3617

ebXML Registry January 2001

ebXML Registry Services Specification Page 100

Copyright © ebXML 2000 & 2001. All Rights Reserved.

CREATE TABLE AuditableEvent (3618
--Object Attributes 3619
 id UUID PRIMARY KEY NOT NULL, 3620
 name LongName, 3621
 description FreeFormText, 3622
 accessControlPolicy UUID NOT NULL, 3623
 3624
--AuditableEvent attributes 3625
 user UUID, 3626
 eventType INT DEFAULT 0 NOT NULL, 3627
 registryEntry UUID NOT NULL, 3628
 timestamp TIMESTAMP NOT NULL, 3629
); 3630
 3631
 3632
 3633
CREATE TABLE User (3634
--Object Attributes 3635
 id UUID PRIMARY KEY NOT NULL, 3636
 name LongName, 3637
 description FreeFormText, 3638
 accessControlPolicy UUID NOT NULL, 3639
 3640
--User attributes 3641
 organization UUID NOT NULL 3642
 3643
--address attributes flattened 3644
 address_city ShortName, 3645
 address_country ShortName, 3646
 address_postalCode ShortName, 3647
 address_state ShortName, 3648
 address_street ShortName, 3649
 3650
 email ShortName, 3651
 3652
--fax attribute flattened 3653
 fax_areaCode VARCHAR(4) NOT NULL, 3654
 fax_countryCode VARCHAR(4), 3655
 fax_extension VARCHAR(8), 3656
 fax_umber VARCHAR(8) NOT NULL, 3657
 fax_url URI 3658
 3659
 --mobilePhone attribute flattened 3660
 mobilePhone_areaCode VARCHAR(4) NOT NULL, 3661
 mobilePhone_countryCode VARCHAR(4), 3662
 mobilePhone_extension VARCHAR(8), 3663
 mobilePhone_umber VARCHAR(8) NOT NULL, 3664
 mobilePhone_url URI 3665
 3666
--name attribute flattened 3667
 name_firstName ShortName, 3668
 name_middleName ShortName, 3669
 name_lastName ShortName, 3670
 3671
--pager attribute flattened 3672
 pager_areaCode VARCHAR(4) NOT NULL, 3673
 pager_countryCode VARCHAR(4), 3674
 pager_extension VARCHAR(8), 3675
 pager_umber VARCHAR(8) NOT NULL, 3676
 pager_url URI 3677
 3678
--telephone attribute flattened 3679
 telephone_areaCode VARCHAR(4) NOT NULL, 3680
 telephone_countryCode VARCHAR(4), 3681
 telephone_extension VARCHAR(8), 3682
 telephone_umber VARCHAR(8) NOT NULL, 3683
 telephone_url URI, 3684
 3685

ebXML Registry January 2001

ebXML Registry Services Specification Page 101

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 url URI, 3686
 3687
); 3688
 3689
CREATE TABLE Organization (3690
--Object Attributes 3691
 id UUID PRIMARY KEY NOT NULL, 3692
 name LongName, 3693
 description FreeFormText, 3694
 accessControlPolicy UUID NOT NULL, 3695
 3696
--Versionable attributes 3697
 majorVersion INT DEFAULT 0 NOT NULL, 3698
 minorVersion INT DEFAULT 1 NOT NULL, 3699
 3700
--RegistryEntry attributes 3701
 status INT DEFAULT 0 NOT NULL, 3702
 userVersion ShortName, 3703
 stability INT DEFAULT 0 NOT NULL, 3704
 expirationDate TIMESTAMP, 3705
 3706
--Organization attributes 3707
 3708
--Organization.address attribute flattened 3709
 address_city ShortName, 3710
 address_country ShortName, 3711
 address_postalCode ShortName, 3712
 address_state ShortName, 3713
 address_street ShortName, 3714
 3715
--primary contact for Organization, points to a User. 3716
--Note many Users may belong to the same Organization 3717
 contact UUID NOT NULL, 3718
 3719
--Organization.fax attribute falttened 3720
 fax_areaCode VARCHAR(4) NOT NULL, 3721
 fax_countryCode VARCHAR(4), 3722
 fax_extension VARCHAR(8), 3723
 fax_umber VARCHAR(8) NOT NULL, 3724
 fax_url URI, 3725
 3726
--Organization.parent attribute 3727
 parent UUID, 3728
 3729
--Organization.telephone attribute falttened 3730
 telephone_areaCode VARCHAR(4) NOT NULL, 3731
 telephone_countryCode VARCHAR(4), 3732
 telephone_extension VARCHAR(8), 3733
 telephone_umber VARCHAR(8) NOT NULL, 3734
 telephone_url URI 3735
); 3736
 3737
 3738
--Note that the RIM security view is not visible through the public query mechanism 3739
--in the current release 3740
 3741
 3742
--The RegistryEntry View allows polymorphic queries over all RIM classes derived 3743
--from RegistryEntry 3744
 3745
CREATE VIEW RegistryEntry (3746
--Object Attributes 3747
 id, 3748
 name, 3749
 description, 3750
 accessControlPolicy, 3751
 3752
--Versionable attributes 3753

ebXML Registry January 2001

ebXML Registry Services Specification Page 102

Copyright © ebXML 2000 & 2001. All Rights Reserved.

 majorVersion, 3754
 minorVersion, 3755
 3756
--RegistryEntry attributes 3757
 status, 3758
 userVersion, 3759
 stability, 3760
 expirationDate 3761
 3762
) AS 3763
 SELECT 3764
--Object Attributes 3765
 id, 3766
 name, 3767
 description, 3768
 accessControlPolicy, 3769
 3770
--Versionable attributes 3771
 majorVersion, 3772
 minorVersion, 3773
 3774
--RegistryEntry attributes 3775
 status, 3776
 userVersion, 3777
 stability, 3778
 expirationDate 3779
 3780
 FROM ExtrinsicObject 3781
 UNION 3782
 3783
 SELECT 3784
--Object Attributes 3785
 id, 3786
 name, 3787
 description, 3788
 accessControlPolicy, 3789
 3790
--Versionable attributes 3791
 majorVersion, 3792
 minorVersion, 3793
 3794
--RegistryEntry attributes 3795
 status, 3796
 userVersion, 3797
 stability, 3798
 expirationDate 3799
 FROM (Registry)Package 3800
 UNION 3801
 3802
 SELECT 3803
--Object Attributes 3804
 id, 3805
 name, 3806
 description, 3807
 accessControlPolicy, 3808
 3809
--Versionable attributes 3810
 majorVersion, 3811
 minorVersion, 3812
 3813
--RegistryEntry attributes 3814
 status, 3815
 userVersion, 3816
 stability, 3817
 expirationDate 3818
FROM ClassificationNode; 3819

 3820

ebXML Registry January 2001

ebXML Registry Services Specification Page 103

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix D Security Implementation Guideline 3821

This section provides a suggested blueprint for how security processing may be 3822
implemented in the Registry. It is meant to be illustrative not prescriptive. 3823
Registries may choose to have different implementations as long as they support 3824
the default security roles and authorization rules described in this document. 3825

D.1 Authentication 3826

1. As soon as a message is received, the first work is the authentication. A 3827
principal object is created. 3828

2. If the message is signed, it is verified (including the validity of the certificate) 3829
and the DN of the certificate becomes the identity of the principal. Then the 3830
Registry is searched for the principal and if found, the roles and groups are 3831
filled in. 3832

3. If the message is not signed, an empty principal is created with the role 3833
RegistryGuest. This step is for symmetry and to decouple the rest of the 3834
processing. 3835

4. Then the message is processed for the command and the objects it will act on 3836

D.2 Authorization 3837

For every object, the access controller will iterate through all the 3838
AccessControlPolicy objects with the object and see if there is a chain through 3839
the permission objects to verify that the requested method is permitted for the 3840
Principal. If any of the permission objects which the object is associated with has 3841
a common role, or identity, or group with the principal, the action is permitted. 3842

D.3 Registry Bootstrap 3843

When a Registry is newly created, a default Principal object should be created 3844
with the identity of the Registry Admin’s certificate DN with a role RegistryAdmin. 3845
This way, any message signed by the Registry Admin will get all the privileges. 3846

When a Registry is newly created, a singleton instance of AccessControlPolicy is 3847
created as the default AccessControlPolicy. This includes the creation of the 3848
necessary Permission instances as well as the Privilges and Privilege attributes. 3849

D.4 Content Submission – Client Responsibility 3850

The Registry client has to sign the contents before submission – otherwise the 3851
content will be rejected. 3852

ebXML Registry January 2001

ebXML Registry Services Specification Page 104

Copyright © ebXML 2000 & 2001. All Rights Reserved.

D.5 Content Submission – Registry Responsibility 3853

1. Like any other request, the client will be first authenticated. In this case, the 3854
Principal object will get the DN from the certificate. 3855

2. As per the request in the message, the RegistryEntry will be created. 3856

3. The RegistryEntry is assigned the singleton default AccessControlPolicy. 3857

4. If a principal with the identity of the SO is not available, an identity object with 3858
the SO’s DN is created 3859

5. A principal with this identity is created 3860

D.6 Content Delete/Deprecate – Client Responsibility 3861

The Registry client has to sign the payload (not entire message) before 3862
submission, for authentication purposes; otherwise, the request will be 3863
rejected 3864

D.7 Content Delete/Deprecate – Registry Responsibility 3865

1. Like any other request, the client will be first authenticated. In this case, the 3866
Principal object will get the DN from the certificate. As there will be a principal 3867
with this identity in the Registry, the Principal object will get all the roles from 3868
that object 3869

2. As per the request in the message (delete or deprecate), the appropriate 3870
method in the Object will be accessed. 3871

3. The access controller performs the authorization by iterating through the 3872
Permission objects associated with this object via the singleton default 3873
AccessControlPolicy. 3874

4. If authorization succeeds then the action will be permitted. Otherwise an error 3875
response is sent back with a suitable AuthorizationException error message. 3876

Appendix E Native Language Support (NLS) 3877

E.1 Definitions 3878

Although this section discusses only character set and language, the following 3879
terms have to be defined clearly. 3880
 3881

ebXML Registry January 2001

ebXML Registry Services Specification Page 105

Copyright © ebXML 2000 & 2001. All Rights Reserved.

E.1.1 Coded Character Set (CCS): 3882

CCS is a mapping from a set of abstract characters to a set of integers. [RFC 3883
2130]. Examples of CCS are ISO-10646, US-ASCII, ISO-8859-1, and so on. 3884
 3885

E.1.2 Character Encoding Scheme (CES): 3886

CES is a mapping from a CCS (or several) to a set of octets. [RFC 2130]. 3887
Examples of CES are ISO-2022, UTF-8. 3888

E.1.3 Character Set (charset): 3889

charset is a set of rules for mapping from a sequence of octets to a sequence of 3890
characters.[RFC 2277],[RFC 2278]. Examples of character set are ISO-2022-JP, 3891
EUC-KR. 3892
 3893
A list of registered character sets can be found at [IANA]. 3894

E.2 NLS And Request / Response Messages 3895

For the accurate processing of data in both registry client and registry services, it 3896
is essential to know which character set is used. Although the body part of the 3897
transaction may contain the charset in xml encoding declaration, registry client 3898
and registry services shall specify charset parameter in MIME header when they 3899
use text/xml. Because as defined in [RFC 3023], if a text/xml entity is received 3900
with the charset parameter omitted, MIME processors and XML processors 3901
MUST use the default charset value of "us-ascii". 3902

 3903
Ex. Content-Type: text/xml; charset=ISO-2022-JP 3904

 3905
Also, when an application/xml entity is used, the charset parameter is optional, 3906
and registry client and registry services must follow the requirements in section 3907
4.3.3 of [REC-XML] which directly address this contingency. 3908
 3909
If another Content-Type is chosen to be used, usage of charset must follow [RFC 3910
3023]. 3911

E.3 NLS And Storing of RegistryEntry 3912

This section provides NLS guidelines on how a registry should store 3913
RegistryEntry instances. 3914

ebXML Registry January 2001

ebXML Registry Services Specification Page 106

Copyright © ebXML 2000 & 2001. All Rights Reserved.

E.3.1 Character Set of RegistryEntry 3915

This is basically an implementation issue because the actual character set that 3916
the RegistryEntry is stored with, does not affect the interface. However, it is 3917
highly recommended to use UTF-16 or UTF-8 for covering various languages. 3918

E.3.2 Language Information of RegistryEntry 3919

The language may be specified in xml:lang attribute (section 2.12 [REC-XML]). If 3920
the xml:lang attribute is specified, then the registry may use that language code 3921
as the value of a special Slot with name language and sloType of nls in the 3922
RegistryEntry. The value must be compliant to [RFC 1766]. Slots are defined in 3923
[RIM]. 3924

E.4 NLS And Storing of Repository Items 3925

This section provides NLS guidelines on how a registry should store repository 3926
items. 3927

E.4.1 Character Set of Repository Items 3928

Unlike the character set of RegistryEntry, the charset of a repository item must 3929
be preserved as it is originally specified in the transaction. The registry may use 3930
a special Slot with name repositoryItemCharset, and sloType of nls for the 3931
RegistryEntry for storing the charset of the corresponding repository item. Value 3932
must be the one defined in [RFC 2277], [RFC 2278]. The 3933
repositoryItemCharset is optional because not all repository items require it. 3934

 3935

E.4.2 Language information of repository item 3936

Specifying only character set is not enough to tell which language is used in 3937
the repository item. A registry may use a special Slot with name 3938
repositoryItemLang, and sloType of nls to store that information. This 3939
attribute is optional because not all repository items require it. Value must be 3940
compliant to [RFC 1766] 3941

 3942
This document currently specifies only the method of sending the information of 3943
character set and language, and how it is stored in a registry. However, the 3944
language information may be used as one of the query criteria, such as retrieving 3945
only DTD written in French. Furthermore, a language negotiation procedure, like 3946
registry client is asking a favorite language for messages from registry services, 3947
could be another functionality for the future revision of this document. 3948

ebXML Registry January 2001

ebXML Registry Services Specification Page 107

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Appendix F Terminology Mapping 3949

While every attempt has been made to use the same terminology used in other 3950
works there are some terminology differences. 3951

The following table shows the terminology mapping between this specification 3952
and that used in other specifications and working groups. 3953

This Document OASIS ISO 11179

“repository item” Registered Object

RegistryEntry Registry Item Administered
Component

ExternalObject Related Data N/A

Object.ID RaItemId

ExtrinsicObject.uri ObjectLocation

ExtrinsicObject.objectType DefnSource,
PrimaryClass, SubClass

RegistryEntry.name CommonName

Object.description Description

ExtrinsicObject.mimeType MimeType

Versionable.majorVersion partially to Version

Versionable.minorVersion partially to Version

RegistryEntry.status RegStatus
Table 1: Terminology Mapping Table 3954

10 References 3955

[GLS] ebXML Glossary, http://www.ebxml.org/documents/199909/terms_of_reference.htm 3956

[TA] ebXML Technical Architecture 3957

 http://www.ebxml.org/specdrafts/ebXML_TA_v1.0.pdf 3958

[OAS] OASIS Information Model 3959

http://www.nist.gov/itl/div897/ctg/regrep/oasis-work.html 3960

[ISO] ISO 11179 Information Model 3961

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621003962
5419d7/b83fc7816a6064c68525690e0065f913?OpenDocument 3963

ebXML Registry January 2001

ebXML Registry Services Specification Page 108

Copyright © ebXML 2000 & 2001. All Rights Reserved.

[BDM] Registry and Repository: Business Domain Model 3964

http://www.ebxml.org/specdrafts/RegRepv1-0.pdf 3965

[RIM] ebXML Registry Information Model 3966

 http://www.ebxml.org/project_teams/registry/private/registryInfoModelv0.54.pdf 3967

[BPM] ebXML Business Process Metamodel Specification Schema 3968

http://www.ebxml.org/specdrafts/Busv2-0.pdf 3969

[CPA] Trading-Partner Specification 3970

http://www.ebxml.org/project_teams/trade_partner/private/ 3971

[CTB] Context table informal document from Core Components 3972

[MS] ebXML Messaging Service Specification, Version 0.21 3973

http://ebxml.org/project_teams/transport/private/ebXML_Messaging_Service_Specification_v0-21.pdf 3974

[ERR] ebXML TRP Error Handling Specification 3975

http://www.ebxml.org/project_teams/transport/ebXML_Message_Service_Specification_v-0.8_001110.pdf 3976

[SEC] ebXML Security Specification 3977

http://lists.ebxml.org/archives/ebxml-ta-security/200012/msg00072.html 3978

[XPT] XML Path Language (XPath) Version 1.0 3979

http://www.w3.org/TR/xpath 3980

[SQL] Structured Query Language (FIPS PUB 127-2) 3981

http://www.itl.nist.gov/fipspubs/fip127-2.htm 3982
[SQL/PSM] Database Language SQL — Part 4: Persistent Stored Modules 3983
 (SQL/PSM) [ISO/IEC 9075-4:1996] 3984
[IANA] IANA (Internet Assigned Numbers Authority). 3985

Official Names for Character Sets, ed. Keld Simonsen et al. 3986
 ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets 3987
 3988

[RFC 1766] IETF (Internet Engineering Task Force). RFC 1766: 3989
Tags for the Identification of Languages, ed. H. Alvestrand. 1995. 3990
http://www.cis.ohio-state.edu/htbin/rfc/rfc1766.html 3991
 3992

[RFC 2277] IETF (Internet Engineering Task Force). RFC 2277: 3993
IETF policy on character sets and languages, ed. H. Alvestrand. 1998. 3994

 http://www.cis.ohio-state.edu/htbin/rfc/rfc2277.html 3995
 3996
[RFC 2278] IETF (Internet Engineering Task Force). RFC 2278: 3997

IANA Charset Registration Procedures, ed. N. Freed and J. Postel. 1998. 3998
http://www.cis.ohio-state.edu/htbin/rfc/rfc2278.html 3999
 4000

[RFC 2130] IETF (Internet Engineering Task Force). RFC 2130: 4001

ebXML Registry January 2001

ebXML Registry Services Specification Page 109

Copyright © ebXML 2000 & 2001. All Rights Reserved.

The Report of the IAB Character Set Workshop held 29 February - 1 4002
March, 1996, 4003
C. Weider, C. Preston, K. Simonsen, H. Alvestrand, R. Atkinson, M. 4004
Crispin, P. Svanberg. 1997. 4005
http://www.cis.ohio-state.edu/htbin/rfc/rfc2130.html 4006
 4007

[RFC 3023] IETF (Internet Engineering Task Force). RFC 3023: 4008
XML Media Types, ed. M. Murata. 2001. 4009
ftp://ftp.isi.edu/in-notes/rfc3023.txt 4010
 4011

[REC-XML] W3C Recommendation. Extensible Markup 4012
language(XML)1.0(Second Edition) 4013

http://www.w3.org/TR/REC-xml 4014

 4015

11 Disclaimer 4016

The views and specification expressed in this document are those of the authors 4017
and are not necessarily those of their employers. The authors and their 4018
employers specifically disclaim responsibility for any problems arising from 4019
correct or incorrect implementation or use of this design. 4020

4021

ebXML Registry January 2001

ebXML Registry Services Specification Page 110

Copyright © ebXML 2000 & 2001. All Rights Reserved.

12 Contact Information 4021

Team Leader 4022

 Name: Scott Nieman 4023

 Company: Norstan Consulting 4024

 Street: 5101 Shady Oak Road 4025

 City, State, Postal Code: Minnetonka, MN 55343 4026

 Country: USA 4027

 Phone: 952.352.5889 4028

 Email: Scott.Nieman@Norstan 4029

 4030

Vice Team Lead 4031

 Name: Yutaka Yoshida 4032

 Company: Sun Microsystems 4033

 Street: 901 San Antonio Road, MS UMPK17-102 4034

 City, State, Postal Code: Palo Alto, CA 94303 4035

 Country: USA 4036

 Phone: 650.786.5488 4037

 Email: Yutaka.Yoshida@eng.sun.com 4038

 4039

Editor 4040

 Name: Farrukh S. Najmi 4041

 Company: Sun Microsystems 4042

 Street: 1 Network Dr., MS BUR02-302 4043

 City, State, Postal Code: Burlington, MA, 01803-0902 4044

 Country: USA 4045

 Phone: 781.442.0703 4046

 Email: najmi@east.sun.com 4047

 4048

4049

ebXML Registry January 2001

ebXML Registry Services Specification Page 111

Copyright © ebXML 2000 & 2001. All Rights Reserved.

Copyright Statement 4049

Copyright © ebXML 2000. All Rights Reserved. 4050

 4051

 This document and translations of it may be copied and furnished to others, and 4052
derivative works that comment on or otherwise explain it or assist in its 4053
implementation may be prepared, copied, published and distributed, in whole or 4054
in part, without restriction of any kind, provided that the above copyright notice 4055
and this paragraph are included on all such copies and derivative works. 4056
However, this document itself may not be modified in any way, such as by 4057
removing the copyright notice or references to the Internet Society or other 4058
Internet organizations, except as needed for the purpose of developing Internet 4059
standards in which case the procedures for copyrights defined in the Internet 4060
Standards process must be followed, or as required to translate it into languages 4061
other than English. 4062

 4063

 The limited permissions granted above are perpetual and will not be revoked by 4064
ebXML or its successors or assigns. 4065

 4066

 This document and the information contained herein is provided on an 4067

 "AS IS" basis and ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR 4068
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE 4069
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 4070
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 4071
PARTICULAR PURPOSE. 4072

