
Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 1
 2
 3
 4
 5

Context and Re-Usability of Core 6

Components 7
 8
 9

ebXML Core Components 10
 11
 12

10 May 2001 13

Version 1.04 14

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 2 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

1 Status of this Document 15

This Technical Report document has been approved by the Core Component Project 16
Team and has been accepted by the ebXML Plenary. 17
 18
This document contains information to guide in the interpretation or implementation of 19
ebXML concepts. 20
 21
Distribution of this document is unlimited. 22
 23
The document formatting is based on the Internet Society’s Standard RFC format. 24
 25
This version: 26

www.ebxml.org/specs/ebCNTXT.pdf 27
 28
Latest version: 29
 www.ebxml.org/specs/ebCNTXT.pdf 30
 31

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 3 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

2 ebXML participants 32

We would like to recognize the following for their significant participation to the 33
development of this document. 34
 35
Editing team: Mike Adcock, APACS 36

Sue Probert, Commerce One 37
James Whittle, e CentreUK 38
Gait Boxman, TIE 39
Thomas Becker, SAP 40

 41
Team Leader: 42
 Arofan Gregory, Commerce One 43
 44
Vice Team Leader: 45
 Eduardo Gutentag, SUN Microsystems 46
 47
Contributors: 48

Tom Warner 49
Jim Dick 50
Rob Jeavons 51
David Connelly 52
Arofan Gregory 53
Martin Bryan 54
Mike Adcock 55
Eduardo Gutentag 56
Matthew Gertner 57
Polly Jan 58
Sharon Kadlec 59
Sally Wang 60
James Wertner 61
Todd Freter 62
Henrik Reiche 63
Chris Nelson 64
Martin Roberts 65
Samantha Rolefes 66

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 4 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

3 Table of Contents 67

1 Status of this Document 2 68
2 ebXML participants 3 69
3 Table of Contents 4 70
4 Introduction 5 71

4.1 Summary of Contents of Document 5 72
4.2 Context Defined 5 73
4.3 Context in a business perspective 6 74

5 Using Context Descriptors 8 75
5.1 Context-controlled Core Component Metamodel 8 76

5.1.1 Core Component Type Definitions 8 77
5.1.2 Basic Information Entity 8 78
5.1.3 Aggregate Information Entity 9 79
5.1.4 Functional Set 9 80

5.2 Context Constraints 9 81
5.3 Seeding Core Components 10 82
5.4 Using Core Components 10 83
5.5 Building Business Documents 10 84
5.6 Beyond Re-use 11 85
5.7 Non-compliance Issue 11 86

6 The Application of Context to Business Problems 12 87
6.1 Promoting Interoperability 12 88

6.1.1 Using Context to Handle Name and Structural Location Variation When 89
Determining Semantic Equivalence 12 90
6.1.2 Reusing Data Across Related Processes 13 91
6.1.3 International and Cultural Variation in Data 14 92

6.2 Implementation Strategies for Core Component Context 15 93
6.2.1 Common Core Component Context Implementation Considerations 15 94
6.2.2 Browser-Hosted Implementation Strategy 15 95
6.2.3 ERP and EDI Integration 16 96

7 Disclaimer 18 97
8 Contact Information 19 98
Copyright Statement 20 99

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 5 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

4 Introduction 100

4.1 Summary of Contents of Document 101
This document describes how business contexts’ influence on data structures can be 102
rendered in an explicit, machine-processable form. This is done by establishing a set of 103
classification hierarchies that are used to identify the situations in which a core 104
component will require modification. The classifications that are being recommended are 105
to be found in ebXML TR - Catalogue of Context Drivers Ver 1.04. The methodology for 106
the use of these context drivers is detailed in ebXML TR – Document Assembly and 107
Context Rules Ver 1.04. 108
 109
The present document MUST be read in conjunction with these documents. The purpose 110
of this document is to give readers sufficient familiarity with the idea of explicit 111
utilization of context drivers to enable them to understand the classifications and 112
methodology as described in those documents. 113
 114
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, 115
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this 116
document, are to be interpreted as described in RFC 2119. 117
 118

4.2 Context Defined 119
When a business process is taking place, the context in which it is taking place can be 120
specified by a set of contextual categories and their associated values. For example, if an 121
glue manufacturer is selling to a shoe manufacturer, the context values might be as 122
follows: 123
 124
Contextual Category Value

Process Procurement
Product Classification Glue
Region (buyer) France
Region (seller) U.S.
Industry (buyer) Garment
Industry (seller) Adhesives
 125
The following set of scenarios explain when context may be applied to a specific Core 126
Component: 127
 128

• Design Time - to create the minimum useful schema. 129
• Integration Time - Identify and help resolve data requirements conflicts required 130

for business transactions. 131
• Run Time - to express the business relationships between data. 132

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 6 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

o Used by Trading Partners to validate the runtime document instances. 133
• Navigation of the registry to find other data sets. 134

o Need to hold the data about the context in the rules. 135
• Discovery Process for creating Core Components or extensions. 136

o Core Components are discovered along with the business context in which 137
they are used. 138

 139
For a catalogue of Contexts, see ebXML TR - Catalogue of Context Drivers Ver 1.04. 140

4.3 Context in a business perspective 141

The concept of context is not new. It can be found already in existing messages like 142
EDIFACT or X12. Context is one of the aspects of modelling business processes, as 143
illustrated in the following example, which shows the top-down modelling of a business 144
process into more and more specific processes: 145

Generic
Edifact/X12 Message

Business transaction
XML or EDI

Business Process break down

The specific use described in a MIG,
defining element and codes usedBusiness Process

Industry

Region

 146
Although UML modelling of business processes is discussed as if it is a completely new 147
approach, it is not. Earlier development of EDI messages was done by identifying 148
business processes. Typically the underlying process was defined in some generic way, 149
describing the specific data elements and codes to be used, while leaving it to 150
implementations to define the specific use of the message. The Message Implementation 151
Guides describe a subset of a generic message, where specific elements qualified by 152
codes express specific data (semantics). The overall term for this expression of specific 153
data is what we define as context. 154
 155
The diagram above also provides an example of where context is used. Breaking down a 156
business process implies the application of some of the major context drivers. 157
 158

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 7 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Context for a business process is one-dimensional, and includes two roles in an industry 159
in a region with respect to an official constraint, for instance. These context drivers are 160
not applied in some sequence: they form the context for the business process. 161
 162
Besides business process context-drivers there may be other activity context-drivers, 163
which again are not applied in some sequence, but form the context for the business 164
activity. 165
 166
The technical application of the Core Components context drivers requires a 167
methodology for using context to define transactions. The business perspective of context 168
is well known and used by implication today. The rest of this technical report, and the 169
ones related to it (ebXML TR - Document Assembly and Context Rules Ver 1.04 and 170
ebXML TR - Catalogue of Context Drivers Ver 1.04) enable an explicit expression and 171
use of context. 172

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 8 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

5 Using Context Descriptors 173

5.1 Context-controlled Core Component Metamodel 174
The formal model for the Context-controlled Core Component Metamodel can be seen in 175
the document ebXML TR - Catalogue of Context Drivers Ver 1.04. 176
 177
5.1.1 Core Component Type Definitions 178
A Core Component Type Definition defines a reusable type of core component for which 179
no pre-determined use name has been assigned. No business semantics are associated 180
with the Core Component Type Definition – these semantics appear when it is used in a 181
Basic Information Entity. 182
Each definition is given a globally unique Identifier, which should be suitable for use as a 183
registry or registry key. 184
 185
A human-readable name for the type (ending in the word Type, e.g. AmountType), and a 186
brief description of the purpose of the type, are also required. For further specification see 187
the document ebXML TR - CC Dictionary Entry Naming Conventions Ver 1.04. 188
 189
By default a Core Component Type Definition is deemed to be restrictable or extendable. 190
If this is not the case the isRestrictable or isExtendable boolean properties must be set to 191
False. This is also true of Basic and Aggregate Information Entities. 192
 193
5.1.2 Basic Information Entity 194
Where the types of data that are permitted for a Basic Information Entity are defined by 195
an external agency the name of the maintaining agency and the agency assigned identifier 196
(id) must be recorded. 197
 198
A formal definition of the relevant Datatype must be associated with each Basic 199
Information Entity. This could be done in accordance with Part 2 of the W3C’s XML 200
Schema specification, or using Document Type Definitions as specified in the W3C 201
XML 1.0 specification. 202
 203
If a data type is associated with an externally defined list of permitted values, then the 204
URI of a resource that defines the set of currently approved permitted values should be 205
recorded as an external value list object. 206
 207
If the list of permitted values is defined as part of the core component definition a 208
Permitted Value List must be created. The list consists of one or more Permitted Values 209
identified by a name that is unique within the list, each of which should be assigned one 210
or more Permitted Value Meanings, each of which consists of a statement of the meaning 211
assigned to the value and the IETF RFC1766 language code identifying the language in 212
which the meaning has been defined. 213
 214

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 9 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

5.1.3 Aggregate Information Entity 215
For each component forming part of an Aggregate Information Entity an Aggregation 216
Rules that identifies a Type Use Rules object must be created. The Type Use Rules 217
record the Name assigned to the referenced type within the location and, optionally, an 218
explanation of the use to which the embedded component is being put within this 219
component. 220
 221
Where there are constraints on the number of times an embedded component can be used 222
these are recorded as the MinMaxConstraints property. 223
 224
Where there are constraints on the order in which sub-components within the aggregate 225
are to be used an Embedded Group must be defined to identify whether the constraint 226
applies to the use of a choice or sequence of objects. 227
 228
5.1.4 Functional Set 229
A Functional Set is a set of two or more Functional Sets, or two or more Basic 230
Information Entities or Aggregates that can be used to model information related to a 231
single function in different ways.1 232
 233

5.2 Context Constraints 234
A Document Model is created by applying a set of Context Rules to a set of Basic and/or 235
Aggregate Information Entities that have been “assembled” to meet a defined business 236
process. 237
 238
The Assemble Types modelling element identifies the base Basic and/or Aggregate 239
Information Entities, applies an appropriate sequence to the components and renames 240
embedded components as required within the business process. 241
 242
The Context Constraints define modifications to be made to existing Basic and/or 243
Aggregate Information Entities when used within specific contexts, and any Application 244
Component needed to extend a core component or the document model. 245
 246
Individual constraints are associated with a particular value within a named taxonomy 247
stored as a named context classification within an ebXML repository. 248
 249
Where the constraint requires that the base definition of a core component be redefined 250
the constraints are defined as a Type Constraint. Where the cons traint applies to a facet of 251
a Datatype definition it forms a Datatype Constraint that is associated with a specific 252
Datatype. 253
 254

1 For example, a location could be recorded as a postal address, a United Nations location code or as a set
of co-ordinates as generated by a Global Positioning System. Which of this set of equivalent functions
would be chosen for a particular message is context dependent.

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 10 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

5.3 Seeding Core Components 255
Lower level core components, either basic or aggregate information entities, can be re-256
used within higher level aggregates. Fundamentally, they are used "in the context of" the 257
higher level aggregate. This is a purely structural context, not a business context, creating 258
stereotype (i.e. fundamental or generic) information entities. 259
 260
Recognizing that there are situations in which equivalent information can be expressed in 261
several ways, relevant core components can be grouped together into Functional Sets. 262
These provide a means by which a limited choice of stereotype information entities can 263
be offered as alternative ways of specifying information for a particular function, e.g. a 264
location can be specified as an address, a GPS reference, or a UN Locode. While the 265
functional set is still a stereotype, the choice is dependent on a business context or 266
contexts. 267
 268

5.4 Using Core Components 269
Use of a core component without any modification in a particular business context 270
creates a Substitute Information Entity. This is registered under a unique business name 271
formed from the context and the stereotype component names. 272
Note: This is essential to record the industry sector(s) that use the substitute 273
information entity, the context(s) in which they are used, and all the substitute 274
information entities that use the Core Component. 275
 276
Use of a core component with extensions (or indeed restrictions) in a particular business 277
context creates a Process Specific Entity. This is registered under a unique business name 278
formed from the context and the stereotype component names. 279
Note: This is essential to record the industry sector(s) that use the substitute 280
information entity, the context(s) in which they are used, and all the process specific 281
entities that use the Core Component. 282
 283
Substitute information entities and process specific entities are collectively Context 284
Constrained Information Entities. Registration of all these, however numerous, is 285
essential to achieve maximum re-use, to avoid "re- inventing the wheel", and to gain 286
interoperability. 287

5.5 Building Business Documents 288

Business documents are built by drawing on the repository "library" of components. The 289
context descriptors that are registered for each component are used to select the 290
appropriate context constrained information entities for the business document that is 291
being built. These values would be the same as values found in a business process model 292
that informs the contextual use of the core components. 293
 294
If no appropriate context constrained information entity exists, a new one must be 295
created, according to the principles described in the previous section, and ideally using an 296

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 11 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

existing stereotype. Registration of the new process specific information entity adds to 297
the range of available context-constrained information entities.. 298

5.6 Beyond Re-use 299
If no appropriate existing stereotype exists, an industry vertical or similar community 300
may need to: 301

• Create additional Basic components for pieces of information, which cannot be 302
represented using already-defined Core Components. These are Domain Basic 303
Components. 304

• Use Core Component(s) to construct a non-core Aggregate Component, called a 305
Domain Complex Component. 306

• Use Core Component(s) and Domain Components to construct a non-core 307
Complex Component, also known as a Domain Complex Component. 308

• Use Domain Component(s) to construct a non-core Complex Component. These 309
are also Domain Complex Components. 310

 311
Ideally, Domain Components need to be recorded in the same detail as Core 312
Components, complete with relevant Context(s). This is an aspect of extensibility; 313
Domain Components should be registered so as to avoid 're- inventing the wheel'. 314
Newcomers can re-use Domain Components and register any additional Context(s) with 315
which they will henceforth be associated 316
At some point, non-core Domain Components can become Core Components, according 317
to criteria that judge the degree of re-use. These values would be the same as values 318
found in a business process model that informs the contextual use of the core 319
components. 320
 321

5.7 Non-compliance Issue 322
This section raises two basic issues: 323

1) Extensibility 324
2) Registration 325
 326

Registering Domain Components cannot be completely policed. Groups or companies 327
might decide to use Core Components, extend them and invent their own Domain 328
Components and never register them. 329
 330
As a consequence, the use of these Domain Components will not become part of the 331
ebXML standards community. Exact equivalents may well be re- invented in a different 332
way, with different naming, and formally registered as a Domain Components. 333
 334
Unregistered Domain Components: 335

• Will hinder communication and interoperability between different communities. 336
• Should not, in any circumstances, be favoured over formally registered 337

equivalents. 338

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 12 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6 The Application of Context to Business Problems 339

This section offers a discussion of how context can be deployed to solve real-world 340
problems of interoperability and document design. It makes no claims to being 341
comprehensive. 342
 343

6.1 Promoting Interoperability 344

A few of the common scenarios faced by trading partners today are: 345
• Same Data, Different Names: Frequently, trading partners are asked to support 346

multiple sets of business vocabularies, where the same data is referred to with two 347
or more different names. Typically, the equivalence is established using mapping 348
and translation tools and code conversions, requiring extensive work to integrate 349
systems. 350

• Same Data, Different Structural Position: This is a related problem - the same 351
piece of data may be located in different places structurally in equivalent 352
messages. 353

• Same Data, Different Process: Because of differences in business process, the 354
same data may be expressed differently. Often, this is seen when the same basic 355
message structure is used in two related processes, but the cardinality of some 356
data members is different based on where the message is being used. 357

• Same Data, Different Culture: This is a case most often seen in international 358
trade, where different cultures format and structure data differently from other 359
cultures. 360

 361
For each of these scenarios, we will look at how the application of context can promote 362
interoperability. In each case, it is assumed that the trading partners describe the data 363
needs for each business process they support in the form of Assembly and Context rules. 364
These can then be made available in a repository, or be given directly to prospective 365
trading partners. Specific implementation options are discussed in more detail below. 366
Please note that all examples given are meant to be illustrative, and may not be based 367
very firmly in reality. 368
 369
6.1.1 Using Context to Handle Name and Structural Location Variation 370

When Determining Semantic Equivalence 371
This section addresses the first two scenarios listed above. One place where this type of 372
lack of interoperability is seen is in supply chain scenarios, where small suppliers are 373
selling into more than one industry vertical. 374
 375
Industry "verticals" are generally defined by the large buyers at the top of the supply 376
chain. Large buyers have highly automated back-office systems; smaller suppliers do not. 377
Because "industries" view things from their own perspective, they tend to organize data 378
differently, and they often use taxonomies that are specific to their industry. Conversely, 379
smaller suppliers often produce goods and services for many different industries: a glue 380

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 13 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

manufacturer could sell a product used in making planes, cars, and shoes, for example, 381
which are seen as three completely separate industry verticals. 382
Since each industry vertical has different names for the same things, and arranges data 383
differently, it is difficult or impossible for SMEs to fully automate their business. The 384
time for data to travel up and down the supply chain is therefore very long, inventories 385
must be kept high, and many potential efficiencies are lost all throughout the supply 386
chain. 387
 388
For example, when our small glue manufacturer receives orders from two of these 389
industries, they will have different "standard" vocabularies. Let's say that in the 390
automotive vocabulary, the requested date for shipping each item in an order is called 391
ShippingDate, and that this information is always included with each item in the 392
order. For the clothing manufacturer, the same information is a ShipDate and it is 393
located only once in the header. 394
 395
Today, this kind of problem would be handled by translation. A transformation tool 396
would map between these obviously corresponding pieces of data. By analyzing the 397
various vocabularies that must be supported, the glue manufacturer would be able to 398
create a map for each industry standard or trading partner vocabulary supported. The 399
problem here is basically one of cost: an expensive analysis must be conducted to 400
determine the equivalencies in each vocabulary, even when they are fairly obvious. 401
 402
The automation of this mapping process is enabled by Semantic Identification 403
Documents, which describe a document's derivation from Assembly and Context Rules, 404
and Assembly and Context rules, which describe the derivation of each industry's 405
vocabulary from a set of core components. In each case, the semantics of the data can be 406
identified by tracing them back to the core component from which they were derived. 407
 408
Because the core component that exists as the basis of any vocabulary can be traced back 409
through this chain, the base semantic of any field or message structure can be determined. 410
By mapping each piece of data in each document structure back to its core, and then 411
comparing the two, equivalence can be automatically determined, and a mapping derived 412
for use by a transformation engine. Note that this process may also require a knowledge 413
of the parent-child relationships between components, as these provide semantic 414
qualification of the core. (For example, a Tax element inside a line item has potentially 415
different semantic relevance than the same component used at the header level.) 416
 417
Ultimately, the cost of developing the mapping for translation technology is reduced, 418
because the extensive manual analysis formerly required is no longer needed. While this 419
does not entirely remove the cost of integrating a new trading partner, it does provide a 420
significant reduction in cost. 421
 422
6.1.2 Reusing Data Across Related Processes 423
Very often, a single item of data is used in multiple transactions within a single business 424
process, or is used in two related business processes. In many cases, a single message 425
structure can be used to support these different processes or related transactions. An 426

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 14 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

example of this includes an Order, which may be used to request a purchase order 427
(OrderRequest), to place an order (Order), and to do change ordering 428
(ChangeOrder). These three transactions require a nearly identical set of data, but are 429
different. Typically, these differences stem from some action or status related to a 430
specific point in the business process, or involve the ability of one trading partner to 431
include data that may not yet be available at the time a message is created. 432
 433
In a description of this document structure, fields must be provided for all of the data 434
required at every stage of the process. At the same time, anything that cannot be included 435
at every point across the business process must be made optional. (This is less of an issue 436
with EDI syntax, since all that needs to be changed is the implementation guide that 437
discusses the use of the document. In XML, either an entirely new document type must 438
be described, or a field must be made "optional" that might be better "required" at some 439
other point in the process.) 440
 441
In order to achieve tight validation, a separate document description for each transaction 442
must be available. If what is wanted is the simplicity offered by having a single document 443
type, then validation must be sacrificed (particularly for XML systems). This is a 444
problem that can be solved through the application of context. 445
 446
By specifying the needed data and optionality within a single document type through 447
context rules, and tying these to a specific transaction or point within the business 448
process, the advantage of smaller, more specific documents, and a single base document 449
type can be achieved. The process described above for tracing a data element back 450
through the Context Rules and Assembly Rules to a specific core component is used 451
again here, although this is typically a design-time activity that does not need to be 452
performed by an application. 453
 454
6.1.3 International and Cultural Variation in Data 455
It is very often the case that a single set of business data is structured differently in 456
different parts of the world. Often, this is a reflection of cultural differences in the real 457
world. Perhaps the best-known example of this is the structuring of addresses, which 458
reveal a huge amount of variation. It is certainly possible to store all potentially useful 459
address-related information in a back-office system, but, depending on where the trading 460
partners are and what their data demands are, they will probably only be capable of 461
processing a small number of the possible structural variations. 462
 463
Context provides a clear way of dealing with this situation: every trading partner can 464
fully describe their structural needs in Context Rules, and the semantic equivalency of 465
different fields can be established using the mechanism described above. This allows us 466
to determine the correct structures for each trading partner, based on where they do 467
business. 468
 469

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 15 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

6.2 Implementation Strategies for Core Component Context 470
Different use cases will require different implementation strategies for taking advantage 471
of core component context. In the case of smaller companies with minimal back-office 472
software in place, a browser-hosted solution using web forms for data entry may be the 473
best choice for integrating with trading partners. Larger companies will need more 474
sophisticated solutions that bind into ERP systems on the back-end, and provide 475
connectivity with EDI gateways for integration with trading partners who have not 476
implemented ebXML. In both cases, it must be possible to perform integration both at 477
design-time and at run-time. Design- time integration is likely to be the standard case, 478
especially in the short term, but run-time integration will yield the most value over the 479
long-term, since it will enable on-the-fly discovery of new trading partners and 480
negotiation of mutually acceptably data forms, without the need for expensive and time-481
consuming manual integration work. 482
 483
6.2.1 Common Core Component Context Implementation Considerations 484
In all integration scenarios, the same underlying process is engaged in order to implement 485
core component context. A context engine is fed the appropriate assembly and context 486
rules for both trading partners, identifying the core components that make up the business 487
documents for a given business process and any modifications that must be made to these 488
core components in order to meet specific trading partner requirements. 489
 490
The assembly rules are applied first, resulting in a schema or DTD modeling the relevant 491
information. (For the sake of simplicity, we will use the term “schema” in subsequent 492
discussion to refer to any one of the various dialects of XML schemas and to DTDs.) 493
Context rules are then applied to adapt the schema to the contexts in which the trading 494
partners are active. The output is thus a customized schema that contains all of the 495
necessary information for the interaction, using standard core components wherever 496
possible to maximize interoperability. 497
 498
In order to achieve run-time integration, additional information, known as schema 499
annotations, must be made available at the core component level to specify bindings to 500
ERP systems, EDI gateways and web forms. These annotations reference standard core 501
components, once again for interoperability purposes. The annotations, on the other hand, 502
are trading-partner-specific and, in essence, tell the run-time integration engine how to 503
marry these standard core components with the implementation details of the systems 504
used by each company. 505
 506
6.2.2 Browser-Hosted Implementation Strategy 507
Small companies that do not have back-office software in place conduct business 508
primarily using phone and fax. For them, manual data processing is an integral part of 509
trading partner integration. Significant value can be gained from use of core components 510
by replacing these existing systems with browser-hosted applications that go straight 511
from a web form to an ebXML-conformant XML document that can be transmitted 512
directly to a trading partner. Conversely, incoming data in the form of XML messages 513
can be displayed in the browser. 514

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 16 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

 515
If a company wishes to perform design- time integration with a specific trading partner, a 516
schema is first generated that takes into account the requirements of the two parties 517
(using the context engine described above). Two primary interfaces must then be 518
implemented based on the data model described by this schema. The first interface 519
enables the company to view incoming XML documents. This can be achieved by simply 520
applying an XSLT stylesheet to the document to generate an HTML document that can 521
be shown in a browser. The second interface is more complex, and must enable the 522
company to enter data that will be used to create a schema-conformant XML document 523
that will be communicated to the trading partner. This form can be developed using any 524
standard web development technology. 525
 526
The main advantage of design- time integration is that it does not require any special 527
technology other than what is commonly available today. On the other hand, the manual 528
development of the kinds of sophisticated web forms needed for real-world 529
implementations of complex schemas is quite challenging and time-consuming. The use 530
of tools that automate this process by generating forms directly from schemas can be 531
highly advantageous, to the extent that these tools are available. 532
 533
In the case of run-time integration, even consultation of incoming documents is more 534
complex than in the design-time scenario. Since the schema is not known ahead of time, 535
so it is not possible to author an XSLT stylesheet to do an XML to HTML mapping. One 536
solution would be to display the documents as raw XML using XML display capabilities 537
such as those included in Internet Explorer 5.0. This is not entirely satisfying, however, 538
as the raw XML view is neither particularly attractive nor intuitive. Otherwise, schema 539
annotations of the type described above can be used to automate the formatting of the 540
document, without the need for a hard-coded stylesheet. 541
 542
Creation and modification of outgoing documents at run-time clearly requires the use of 543
some sort of tool capable of generating web forms dynamically from schemas. To a large 544
extent, all of the information necessary for this task is contained in the schema itself: 545
structural information, data types, optionality, etc. Additional information such as field 546
labels, length and ordering can be specified using schema annotations. If XML 547
conformant with the input schema is generated when the form is submitted, the result is a 548
full- fledged system for manual interaction in the web browser with ebXML-compliant 549
systems. 550
 551
6.2.3 ERP and EDI Integration 552
For design-time integration with ERP systems and EDI gateways, the schema generated 553
from the assembly and context rules document is used as the basis for the mapping. One 554
option is to write custom integration code that reads the data from the appropriate system 555
(e.g. BAPI calls to retrieve data from an SAP R/3 database) and generates an XML 556
document that conforms to the schema. This is a fairly straightforward process that can 557
leverage a large body of XML processing software. 558
 559

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 17 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Another option is to use one of the increasing number of XML-savvy integration tools. 560
Tools exist already for reading data from a wide range of ERP systems and generating 561
XML documents, and vendors are now announcing support for XML schemas that will 562
partially automate these mappings by reading the schema describing the desired XML 563
document format. The same applies to EDI support; EDI-to-XML gateways exist and are 564
beginning to provide XML schema support that will render the integration task more 565
straightforward. 566
 567
When run-time integration is a requirement, the same issue arises as with browser-based 568
integration. The schema is not known ahead of time, so it is not possible to write custom 569
code in order to generate XML documents of the appropriate format. The aforementioned 570
schema-aware integration tools for ERP and EDI represent one possible solution to this 571
problem, to the extent that they are capable of fully automating the binding of schemas. 572
As the schema support provided by these systems matures, it is likely that schema 573
annotations of the type described above with also be used to determine which data in the 574
EDI documents or ERP databases corresponds to which data in the generated XML 575
documents. 576
 577
Clearly integration must work in both directions; i.e. it must be possible to read data from 578
an ERP system, and to write data from an incoming XML document back to the ERP 579
system. In the case of EDI systems it will be necessary to convert from EDI to XML and 580
vice versa. While these cases are not always entirely equivalent (e.g. writing back to an 581
ERP system requires concurrency control that is irrelevant when reading from the 582
system), the differences are implementation details that do not change the overall 583
integration strategy. 584

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 18 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

7 Disclaimer 585

The views and specification expressed in this document are those of the authors and are 586
not necessarily those of their employers. The authors and their employers specifically 587
disclaim responsibility for any problems arising from correct or incorrect implementation 588
or use of this design. 589

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 19 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

8 Contact Information 590

Team Leader 591
 Name Arofan Gregory 592
 Company Commerce One 593
 Street Vallco Parkway 594
 City, state, zip/other Cupertino, CA 595
 Nation US 596
 597
 Phone: 598
 Email: arofan.gregory@commerceone.com 599
 600
Vice Team Lead 601
 Name Mike Adcock 602
 Company APACS 603
 Street Mercury House, Triton Court, 14 Finsbury Square 604
 City, state, zip/other London EC2A 1LQ 605
 Nation UK 606
 607
 Phone: +44-20-7711-6318 608
 Email: mike.adcock@apacs.org.uk 609
 610
Editor 611
 Name James Whittle 612
 Company e centreUK 613
 Street 10, Maltravers Street 614
 City, state, zip/other London WC2R 3BX 615
 Nation UK 616
 617
 Phone: +44-20-7655-9022 618
 Email: james.whittle@e-centre.org.uk 619

ebXML Core Components May 2001

Context and Re-Usability of Core Components Page 20 of 20

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved.

Copyright Statement 620

Copyright © UN/CEFACT and OASIS, 2001. All Rights Reserved. 621
 622
This document and translations of it MAY be copied and furnished to others, and 623
derivative works that comment on or otherwise explain it or assist in its implementation 624
MAY be prepared, copied, published and distributed, in whole or in part, without 625
restriction of any kind, provided that the above copyright notice and this paragraph are 626
included on all such copies and derivative works. However, this document itself MAY 627
not be modified in any way, such as by removing the copyright notice or references to 628
ebXML, UN/CEFACT, or OASIS, except as required to translate it into languages other 629
than English. 630
 631
The limited permissions granted above are perpetual and will not be revoked by ebXML 632
or its successors or assigns. 633
 634
This document and the information contained herein is provided on an "AS IS" basis and 635
ebXML DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING 636
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE 637
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 638
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR 639
PURPOSE. 640

